Abstract
Skin lesion recognition is one of the most important tasks in dermoscopic image analysis. Current Convolutional Neural Network (CNN) algorithms based recognition methods tend to become a standard methodology to fix a large array of Computer-Aided Diagnosis (CAD) and interpretation problems. Besides significant practical and theoretical improvements in their architecture, their effectiveness is built on the existence of the flexible pre-trained models which generalize well to novel tasks and handle the problem of having small set of dermoscopic data. However, existing works pay little attention to exploring the benefits of hierarchical multi-feature fusion for classifying the skin lesions in digital dermoscopic images. Practically, it has been found that integrating multi-layer features has significant potential for improving performance of any pattern recognition task. In this paper, we developed a robust CAD system based on transfer learning and multi-layer feature fusion network to diagnose complex skin diseases. It is a convenient approach in terms of overfitting prevention, convergence speed and high morphological feature similarity processing. Our research focuses exclusively on obtaining optimal performance with addressing the various gaps in the skin pattern recognition area. For validation and comparison purposes, the proposed approach was evaluated on publicly dermoscopic dataset, and achieved the high recognition precision compared with fully trained CNN models, fine-tuning process, single CNN model and other related works. Therefore, the study demonstrates that our proposed approach can dramatically improve the performance of CAD systems which are based on the conventional recognition and classification algorithms for skin lesion recognition in dermoscopic data.
Similar content being viewed by others
Change history
04 May 2020
The Eqs. 5 and 9 in the original publication of this article contained an error. The original article has been corrected.
References
Abd-Ellah M, Awad A, Khalaf A, Hamed H (2018) Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks. EURASIP Journal on Image and Video Processing 2018(97):1–10. https://doi.org/10.1186/s13640-018-0332-4
Agrawal P, Girshick R, Malik J (2014) Analyzing the performance of multilayer neural networks for object recognition. In: Computer vision-ECCV 2014 329-344. https://doi.org/10.1007/978-3-319-10584-0_22
Akcay S, Kundegorski M, Devereux M, Breckon T (2016) Transfer learning using convolutional neural networks for object classification within X-ray baggage security imagery. In: 2016 IEEE international conference on image processing (ICIP). https://doi.org/10.1109/icip.2016.7532519
Anic G, Sondak V, Messina J, Fenske N, Zager J, Cherpelis B, Lee J, Fulp W, Epling-Burnette P, Park J, Rollison D (2013) Telomere length and risk of melanoma, squamous cell carcinoma, and basal cell carcinoma. Cancer Epidemiol 37(4):434–439. https://doi.org/10.1016/j.canep.2013.02.010
Antropova N, Huynh B, Giger M (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 44(10):5162–5171. https://doi.org/10.1002/mp.12453
Anwar S, Majid M, Qayyum A, Awais M, Alnowami M, Khan M (2018) Medical image analysis using convolutional neural networks: A review. J Med Syst 42(11):1–13. https://doi.org/10.1007/s10916-018-1088-1
Aubreville M, Knipfer C, Oetter N, Jaremenko C, Rodner E, Denzler J, Bohr C, Neumann H, Stelzle F, Maier A (2017) Automatic classification of cancerous tissue in Laserendomicroscopy images of the oral cavity using deep learning. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-12320-8
Azizpour H, Razavian A, Sullivan J, Maki A, Carlsson S (2015) From generic to specific deep representations for visual recognition. In: 2015 IEEE conference on computer vision and pattern recognition workshops (CVPRW). https://doi.org/10.1109/cvprw.2015.7301270
Bakkouri I, Afdel K (2017) Breast tumor classification based on deep convolutional neural networks. In: 2017 international conference on advanced technologies for signal and image processing (ATSIP). https://doi.org/10.1109/atsip.2017.8075562
Bakkouri I, Afdel K (2018) Convolutional neural-adaptive networks for melanoma recognition. In: International conference on image and signal processing 453-460. https://doi.org/10.1007/978-3-319-94211-7_49
Bakkouri I, Afdel K (2018) Multi-scale CNN based on region proposals for efficient breast abnormality recognition. Multimed Tools Appl 78(10):12939–12960. https://doi.org/10.1007/s11042-018-6267-z
Baldi P, Sadowski P (2014) The dropout learning algorithm. Artif Intell 210:78–122. https://doi.org/10.1016/j.artint.2014.02.004
Banerjee I, Crawley A, Bhethanabotla M, Daldrup-Link H, Rubin D (2018) Transfer learning on fused multiparametric MR images for classifying histopathological subtypes of rhabdomyosarcoma. Comput Med Imaging Graph 65:167–175. https://doi.org/10.1016/j.compmedimag.2017.05.002
Byra M, Styczynski G, Szmigielski C, Kalinowski P, Michalowski L, Paluszkiewicz R, Ziarkiewicz-Wroblewska B, Zieniewicz K, Sobieraj P, Nowicki A (2018) Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int J Comput Assist Radiol Surg 13(12):1895–1903. https://doi.org/10.1007/s11548-018-1843-2
Castrejon L, Aytar Y, Vondrick C, Pirsiavash H, Torralba A (2016) Learning aligned cross-modal representations from weakly aligned data. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/cvpr.2016.321
Chen W, Samuelson F (2014) The average receiver operating characteristic curve in multireader multicase imaging studies. Br J Radiol 87(1040):1–8. https://doi.org/10.1259/bjr.20140016
Chen Y, Xie H, Shin H (2018) Multi-layer fusion techniques using a CNN for multispectral pedestrian detection. IET Comput Vis 12(8):1179–1187. https://doi.org/10.1049/iet-cvi.2018.5315
Chougrad H, Zouaki H, Alheyane O (2018) Deep convolutional neural networks for breast cancer screening. Comput Methods Programs Biomed 157:19–30. https://doi.org/10.1016/j.cmpb.2018.01.011
Chu B, Madhavan V, Beijbom O, Hoffman J, Darrell T (2016) Best practices for fine-tuning visual classifiers to new domains. In: European conference on computer vision 9915:435-442. https://doi.org/10.1007/978-3-319-49409-8_34
Chu J, Guo Z, Leng L (2018) Object detection based on multi-layer convolution feature fusion and online hard example mining. IEEE Access 6:19959–19967. https://doi.org/10.1109/access.2018.2815149
Coates A, Huval B, Wang T, Wu D, Catanzaro B Y, Ng A (2013) Deep learning with COTS HPC systems. In: International conference on machine learning
Codella N, Gutman D, Celebi M, Helba B, Marchetti M, Dusza S, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A (2018) Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). https://doi.org/10.1109/isbi.2018.8363547
Dai X, Ng J, Davis L (2017) FASON: First and second order information fusion network for texture recognition. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/cvpr.2017.646
Ding S, Zhu H, Jia W, Su C (2011) A survey on feature extraction for pattern recognition. Artif Intell Rev 37(3):169–180. https://doi.org/10.1007/s10462-011-9225-y
Dorj U, Lee K, Choi J, Lee M (2018) The skin cancer classification using deep convolutional neural network. Multimed Tools Appl 77(8):9909–9924. https://doi.org/10.1007/s11042-018-5714-1
Du C, Gao S (2017) Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network. IEEE Access 5:15750–15761. https://doi.org/10.1109/access.2017.2735019
Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159
Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. https://doi.org/10.1038/nature21056
Ge Y, Jiang S, Xu Q, Jiang C, Ye F (2017) Exploiting representations from pre-trained convolutional neural networks for high-resolution remote sensing image retrieval. Multimed Tools Appl 77(13):17489–17515. https://doi.org/10.1007/s11042-017-5314-5
Gibson E, Li W, Sudre C, Fidon L, Shakir D, Wang G, Eaton-Rosen Z, Gray R, Doel T, Hu Y, Whyntie T, Nachev P, Modat M, Barratt D, Ourselin S, Cardoso M, Vercauteren T (2018) NiftyNet: a deep-learning platform for medical imaging. Comput Methods Programs Biomed 158:113–122. https://doi.org/10.1016/j.cmpb.2018.01.025
Gogate M, Adeel A, Hussain A (2017) Deep learning driven multimodal fusion for automated deception detection. In: 2017 IEEE symposium series on computational intelligence (SSCI). https://doi.org/10.1109/ssci.2017.8285382
Golrizkhatami Z, Acan A (2018) ECG classification using three-level fusion of different feature descriptors. Expert Syst Appl 114:54–64. https://doi.org/10.1016/j.eswa.2018.07.030
Gong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: Computer vision-ECCV 2014 392-407. https://doi.org/10.1007/978-3-319-10584-0_26
Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew M (2016) Deep learning for visual understanding: A review. Neurocomputing 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116
Gutman D, Codella N, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). arXiv:1605.01397
Han L, Hu J, Li L (2013) Structure descriptor for articulated shape analysis. In: International symposium on visual computing 171-180. https://doi.org/10.1007/978-3-642-41914-0_18
Han S, Kim M, Lim W, Park G, Park I, Chang S (2018) Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Investig Dermatol 138(7):1529–1538. https://doi.org/10.1016/j.jid.2018.01.028
Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31. https://doi.org/10.1016/j.media.2016.05.004
He K, Zhang X, Ren S, Sun J Deep Residual Learning for Image Recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR, vol 2016. https://doi.org/10.1109/cvpr.2016.90
Hou Q, Cheng M, Hu X, Borji A, Tu Z, Torr P Deeply supervised salient object detection with short connections. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), vol 2017. https://doi.org/10.1109/cvpr.2017.563
Huang G, Liu Z, Maaten L, Weinberger K, vol 2017, Densely connected convolutional networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/cvpr.2017.243
Huo L, Rao T, Zhang L (2018) Fused feature encoding in convolutional neural network. Multimed Tools Appl 78(2):1635–1648. https://doi.org/10.1007/s11042-018-6249-1
Ide H, Kurita T (2016) Low level visual feature extraction by learning of multiple tasks for convolutional neural networks. In: 2016 International joint conference on neural networks (IJCNN). https://doi.org/10.1109/ijcnn.2016.7727665
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. In: ACM international conference on multimedia (MM). https://doi.org/10.1145/2647868.2654889
Kingma D, Ba J (2015) Adam: A Method for Stochastic Optimization. 2015 International Conference on Learning Representations (ICLR). arXiv:1412.6980
Kleinberg R, Li Y, Yuan Y (2018) An alternative view: When Does SGD escape local minima?. In: 2018 International conference on machine learning (ICML). arXiv:1802.06175
Krizhevsky A, Sutskever I, Hinton G (2017) ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems. https://doi.org/10.1145/3065386, vol 1, pp 1097–1105
Kuai Y, Wen G, Li D (2018) Hyper-Siamese network for robust visual tracking. SIViP 13(1):35–42. https://doi.org/10.1007/s11760-018-1325-6
Lacy K, Alwan W (2013) Skin cancer. Medicine 41(7):402–405. https://doi.org/10.1016/j.mpmed.2013.04.008
Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In: Proceedings of the IEEE. https://doi.org/10.1109/5.726791, vol 86, pp 2278–2324
Lee H, Mendes A, Spolaôr N, Oliva J, Sabino Parmezan A, Wu F, Fonseca-Pinto R (2018) Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines. Knowl-Based Syst 158:9–24. https://doi.org/10.1016/j.knosys.2018.05.016
Lee T, Ng V, Gallagher R, Coldman A, McLean D (1997) Dullrazor: A software approach to hair removal from images. Comput Biol Med 27(6):533–543. https://doi.org/10.1016/s0010-4825(97)00020-6
Li E, Xia J, Du P, Lin C, Samat A (2017) Integrating multilayer features of convolutional neural networks for remote sensing scene classification. IEEE Trans Geosci Remote Sens 55(10):5653–5665. https://doi.org/10.1109/tgrs.2017.2711275
Li F, Zurada J, Liu Y, Wu W (2017) Input layer regularization of multilayer feedforward neural networks. IEEE Access 5:10979–10985. https://doi.org/10.1109/access.2017.2713389
Li H, Weng J, Shi Y, Gu W, Mao Y, Wang Y, Liu W, Zhang J (2018) An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Sci Rep 8(1):1–12. https://doi.org/10.1038/s41598-018-25005-7
Li Y, Charalampaki P, Liu Y, Yang G, Giannarou S (2018) Context aware decision support in neurosurgical oncology based on an efficient classification of endomicroscopic data. Int J Comput Assist Radiol Surg 13(8):1187–1199. https://doi.org/10.1007/s11548-018-1806-7
Li Y, Shen L (2018) Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2):1–16. https://doi.org/10.3390/s18020556
Liu B, Wei Y, Zhang Y, Yang Q (2017) Deep neural networks for high dimension low sample size data. In: Proceedings of the 26th international joint conference on artificial intelligence. https://doi.org/10.24963/ijcai.2017/318
Liu M, Cheng D, Wang K, Wang Y (2018) Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics 16 (3/4):295–308. https://doi.org/10.1007/s12021-018-9370-4
Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi F (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26. https://doi.org/10.1016/j.neucom.2016.12.038
Lynn N, Kyu Z (2017) Segmentation and Classification of Skin Cancer Melanoma from Skin Lesion Images. In: 2017 18th international conference on parallel and distributed computing, applications and technologies (PDCAT). https://doi.org/10.1109/pdcat.2017.00028
Ma C, Huang J, Yang X, Yang M (2015) Hierarchical convolutional features for visual tracking. In: 2015 IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2015.352
Ma C, Huang J, Yang X, Yang M (2018) Robust visual tracking via hierarchical convolutional features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2018.2865311
Maas A, Hannun A, Ng A (2013) Rectifier nonlinearities improve neural network acoustic models. In: 2013 international conference on machine learning (ICML)
Majumder N, Hazarika D, Gelbukh A, Cambria E, Poria S (2018) Multimodal sentiment analysis using hierarchical fusion with context modeling. Knowl-Based Syst 161:124–133. https://doi.org/10.1016/j.knosys.2018.07.041
Mash R, Borghetti B, Pecarina J (2016) Improved aircraft recognition for aerial refueling through data augmentation in convolutional neural networks. In: Advances in visual computing 113-122. https://doi.org/10.1007/978-3-319-50835-1_11
Matsugu M, Cardon P (2004) Unsupervised feature selection for multi-class object detection using convolutional neural networks. In: International symposium on neural networks 864-869. https://doi.org/10.1007/978-3-540-28647-9_142
Menegola A, Fornaciali M, Pires R, Bittencourt F, Avila S, Valle E (2017) Knowledge transfer for melanoma screening with deep learning. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017). https://doi.org/10.1109/isbi.2017.7950523
Mukkamala M, Hein M (2017) Variants of RMSProp and Adagrad with logarithmic regret bounds. In: 2017 international conference on machine learning (ICML). arXiv:1706.05507
Nickerson P, Tighe P, Shickel B, Rashidi P (2016) Deep neural network architectures for forecasting analgesic response. In: 2016 38th annual international conference of the ieee engineering in medicine and biology society (EMBC). https://doi.org/10.1109/embc.2016.7591352
Popescu D, Ichim L (2015) Image recognition in UAV application based on texture analysis. In: International conference on advanced concepts for intelligent vision systems 693-704. https://doi.org/10.1007/978-3-319-25903-1_60
Shie C, Chuang C, Chou C, Wu M, Chang E (2015) Transfer representation learning for medical image analysis. In: 2015 37th annual international conference of the ieee engineering in medicine and biology society (EMBC). https://doi.org/10.1109/embc.2015.7318461
Shin H, Roth H, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers R (2016) Deep convolutional neural networks for computer-aided detection: CNN Architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298. https://doi.org/10.1109/tmi.2016.2528162
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 2015 International conference on learning representations (ICLR). arXiv:1409.1556
Sun A, Lim E (2001) Hierarchical text classification and evaluation. In: Proceedings 2001 IEEE international conference on data mining. https://doi.org/10.1109/icdm.2001.989560
Sun J, Wan C, Cheng J, Yu F, Liu J (2017) Retinal image quality classification using fine-tuned CNN. In: International workshop on ophthalmic medical image analysis 126-133. https://doi.org/10.1007/978-3-319-67561-9_14
Tang J, Mat Isa N (2014) Adaptive image enhancement based on bi-histogram equalization with a clipping limit. Comput Electr Eng 40(8):86–103. https://doi.org/10.1016/j.compeleceng.2014.05.017
Taqi A, Awad A, Al-Azzo F, Milanova M (2018) The impact of multi-optimizers and data augmentation on tensorflow convolutional neural network performance. In: 2018 IEEE conference on multimedia information processing and retrieval (MIPR). https://doi.org/10.1109/mipr.2018.00032
Thao L, Quang N (2017) Automatic skin lesion analysis towards melanoma detection. In: 2017 21st Asia pacific symposium on intelligent and evolutionary systems (IES). https://doi.org/10.1109/iesys.2017.8233570
Toader M, Esanu I, Taranu T, Toader S (2017) Utility of polarized dermoscopy in the diagnosis of cutaneous lupus erythematosus and morphea. In: 2017 E-health and bioengineering conference (EHB). https://doi.org/10.1109/ehb.2017.7995491
Tripathi G, Singh K, Vishwakarma D (2018) Convolutional neural networks for crowd behaviour analysis: a survey. Vis Comput 35 (5):753–776. https://doi.org/10.1007/s00371-018-1499-5
Tschandl P, Rosendahl C, Kittler H (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data 5:1–9. https://doi.org/10.1038/sdata.2018.161
Tschandl P, Sinz C, Kittler H (2019) Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation. Comput Biol Med 104:111–116. https://doi.org/10.1016/j.compbiomed.2018.11.010
Vu T, Ho N, Yang H, Kim J, Song H (2018) Non-white matter tissue extraction and deep convolutional neural network for Alzheimer’s disease detection. Soft Comput 22(20):6825–6833. https://doi.org/10.1007/s00500-018-3421-5
Wan M, Lai Z, Yang G, Yang Z, Zhang F, Zheng H (2017) Local graph embedding based on maximum margin criterion via fuzzy set. Fuzzy Set Syst 318:120–131. https://doi.org/10.1016/j.fss.2016.06.001
Wan M, Li M, Yang G, Gai S, Jin Z (2014) Feature extraction using two-dimensional maximum embedding difference. Inform Sci 274:55–69. https://doi.org/10.1016/j.ins.2014.02.145
Wan M, Yang G, Gai S, Yang Z (2015) Two-dimensional discriminant locality preserving projections (2DDLPP) and its application to feature extraction via fuzzy set. Multimed Tools Appl 76(1):355–371. https://doi.org/10.1007/s11042-015-3057-8
Wang X, Hua X, Xiao F, Li Y, Hu X, Sun P (2018) Multi-object detection in traffic scenes based on improved SSD. Electronics 7(11):1–28. https://doi.org/10.3390/electronics7110302
Wei Y, Zhao Y, Lu C, Wei S, Liu L, Zhu Z, Yan S (2016) Cross-modal retrieval with CNN visual features: A new baseline. IEEE Transactions on Cybernetics 47(2):449–460. https://doi.org/10.1109/tcyb.2016.2519449
Wen J, Ye F, Huang X, Li S, Yang L, Xiao X, Xie X (2015) Prognostic significance of preoperative circulating monocyte count in patients with breast cancer. Medicine 94(49):1–7. https://doi.org/10.1097/md.0000000000002266
Wu Z, Singh B, Davis L, Subrahmanian V (2017) Deception detection in videos. arXiv:1712.04415
Xu J, Zhang Z, Friedman T, Liang Y, Broeck G (2018) A semantic loss function for deep learning with symbolic knowledge. In: Proceedings of machine learning research (PMLR). arXiv:1711.11157
Yang X, Bian C, Yu L, Ni D, Heng P (2018) Class-balanced deep neural network for automatic ventricular structure segmentation. In: International workshop on statistical atlases and computational models of the heart 152-160. https://doi.org/10.1007/978-3-319-75541-0_16
Yang Y, Shah M (2014) Learning discriminative features and metrics for measuring action similarity. In: 2014 IEEE international conference on image processing (ICIP). https://doi.org/10.1109/icip.2014.7025311
Ye F, Pu J, Wang J, Li Y, Zha H (2017) Glioma grading based on 3D multimodal convolutional neural network and privileged learning. In: 2017 IEEE international conference on bioinformatics and biomedicine (BIBM). https://doi.org/10.1109/bibm.2017.8217751
Yosinski J, Clune J, Bengio Y, Lipson H (1792) How transferable are features in deep neural networks?. In: International Conference on Neural Information Processing Systems. arXiv:1411.1792
Yu C, Yang S, Kim W, Jung J, Chung K, Lee S, Oh B (2018) Acral melanoma detection using a convolutional neural network for dermoscopy images. PLOS ONE 13(3):1–14. https://doi.org/10.1371/journal.pone.0196621
Yu D, Liu Y, Pang Y, Li Z, Li H (2018) A multi-layer deep fusion convolutional neural network for sketch based image retrieval. Neurocomputing 296:23–32. https://doi.org/10.1016/j.neucom.2018.03.031
Yu W, Yang K, Yao H, Sun X, Xu P (2017) Exploiting the complementary strengths of multi-layer CNN features for image retrieval. Neurocomputing 237:235–241. https://doi.org/10.1016/j.neucom.2016.12.002
Yu Z, Jiang X, Zhou F, Qin J, Ni D, Chen S, Lei B, Wang T (2018) Melanoma recognition in dermoscopy images via aggregated deep convolutional features. IEEE Trans Biomed Eng 66(4):1006–1016. https://doi.org/10.1109/tbme.2018.2866166
Zhang K, Guo L, Gao C (2018) Optimization method of residual networks of residual networks for image classification. In: 2018 IEEE international conference on big data and smart computing (BigComp). https://doi.org/10.1109/bigcomp.2018.00054
Zhang X, Wang S, Liu J, Tao C (2018) Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge. BMC Med Inform Decis Mak 18(2):1–8. https://doi.org/10.1186/s12911-018-0631-9
Zhang Y, Muhammad K, Tang C (2018) Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on GPU platform. Multimed Tools Appl 77(17):22821–22839. https://doi.org/10.1007/s11042-018-5765-3
Zhao R, Ouyang W, Li H, Wang X (2015) Saliency detection by multi-context deep learning. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/cvpr.2015.7298731
Zheng L, Zhao Y, Wang S, Wang J, Tian Q (2016) Good practice in CNN feature transfer. arXiv:1604.00133
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bakkouri, I., Afdel, K. Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images. Multimed Tools Appl 79, 20483–20518 (2020). https://doi.org/10.1007/s11042-019-07988-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-019-07988-1