[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Improved ensemble growing method for steganalysis of digital media

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Ensemble methods provide significantly a low training complexity which enables a steganalyst to work with high dimensional cover models. In this paper, we propose an improved method for growing an ensemble of classifiers. Each classifier of the ensemble is trained with a subspace of the features. The features are selected based on a predefined probability distribution. This distribution is proportional to the information that each feature carries about the class label. To make the final decision, the outputs of a subset of classifiers are fused using the majority voting. An information-theoretic classifier selection method is employed to find an appropriate subset of classifiers for the fusion phase. Using these modifications, we pursue different improvements such as reduction of memory needed to store the model, reduction of the prediction time, and enhancing the generalization ability of the model. The proposed method is compared with some state of the art methods. Results show that the number of the classifiers and the number of features in each subspace are significantly reduced. Also, there exists a small reduction in the error rate. On the other hand, simulations show a small increment in the training time while having a significant reduction in the prediction time of the ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Atawneh S, Almomani A, Al Bazar H, Sumari P, Gupta B (2017) Secure and imperceptible digital image steganographic algorithm based on diamond encoding in dwt domain. Multimedia Tools and Applications 76(18):18451–18472

    Article  Google Scholar 

  2. Boroumand M, Fridrich J (2018) Applications of explicit non-linear feature maps in steganalysis. IEEE Trans Inf Forensics Secur 13(4):823–833

    Article  Google Scholar 

  3. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MathSciNet  MATH  Google Scholar 

  4. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  5. Brown G (2009) An information theoretic perspective on multiple classifier systems. In: International workshop on multiple classifier systems. Springer, Berlin, pp 344–353

  6. Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorisation. Information Fusion 6(1):5–20

    Article  Google Scholar 

  7. Brown G, Pocock A, Zhao MJ, Lujȧn M (2012) Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res 13(Jan):27–66

    MathSciNet  MATH  Google Scholar 

  8. Chen C, Shi YQ (2008) Jpeg image steganalysis utilizing both intrablock and interblock correlations. In: 2008 IEEE international symposium on circuits and systems. IEEE, pp 3029–3032

  9. Cogranne R, Fridrich J (2015) Modeling and extending the ensemble classifier for steganalysis of digital images using hypothesis testing theory. IEEE Trans Inf Forensics Secur 10(12):2627–2642

    Article  Google Scholar 

  10. Cogranne R, Zitzmann C, Retraint F, Nikiforov IV, Cornu P, Fillatre L (2014) A local adaptive model of natural images for almost optimal detection of hidden data. Signal Process 100:169–185

    Article  Google Scholar 

  11. Freund Y, Schapire RE (1995) A desicion-theoretic generalization of online learning and an application to boosting. In: European conference on computational learning theory. Elsevier, pp 23–37

  12. Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur 7(3):868–882

    Article  Google Scholar 

  13. Fridrich J, Pevnỳ T, Kodovskỳ J (2007) Statistically undetectable jpeg steganography: dead ends challenges, and opportunities. In: Proceedings of the 9th workshop on multimedia & security. ACM, pp 3–14

  14. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  15. Holub V, Fridrich J (2015) Low-complexity features for jpeg steganalysis using undecimated dct. IEEE Trans Inf Forensics Secur 10(2):219–228

    Article  Google Scholar 

  16. Holub V, Fridrich J, Denemark T (2014) Universal distortion function for steganography in an arbitrary domain. EURASIP J Inf Secur 2014(1):1

    Article  Google Scholar 

  17. Hu X, Ni J, Shi YQ (2018) Efficient jpeg steganography using domain transformation of embedding entropy. IEEE Signal Process Lett 25(6):773–777

    Article  Google Scholar 

  18. Ker AD, Bas P, Böhme R, Cogranne R, Craver S, Filler T, Fridrich J, Pevnỳ T (2013) Moving steganography and steganalysis from the laboratory into the real world. In: Proceedings of the first ACM workshop on Information hiding and multimedia security. ACM, pp 45–58

  19. Kodovskỳ J, Fridrich J (2009) Calibration revisited. In: Proceedings of the 11th ACM workshop on Multimedia and security. ACM, pp 63–74

  20. Kodovskỳ J, Fridrich J (2012) Steganalysis of jpeg images using rich models. In: IS&T/SPIE electronic imaging international society for optics and photonics, p 83030A

  21. Kodovskỳ J, Pevnỳ T, Fridrich J (2010) Modern steganalysis can detect yass. In: IS&T/SPIE electronic imaging, international society for optics and photonics, p 754102

  22. Kodovsky J, Fridrich J, Holub V (2012) Ensemble classifiers for steganalysis of digital media. IEEE Transactions on Information Forensics and Security 7(2):432–444

    Article  Google Scholar 

  23. Kulkarni VY, Sinha PK (2012) Pruning of random forest classifiers: a survey and future directions. In: 2012 International conference on data science & engineering (ICDSE). IEEE, pp 64–68

  24. Li B, Li Z, Zhou S, Tan S, Zhang X (2018) New steganalytic features for spatial image steganography based on derivative filters and threshold LBP operator. IEEE Trans Inf Forensics Secur 13(5):1242–1257

    Article  Google Scholar 

  25. Li H, Luo W, Qiu X, Huang J (2017b) Image forgery localization via integrating tampering possibility maps. IEEE Trans Inf Forensics Secur 12(5):1240–1252

    Article  Google Scholar 

  26. Meynet J, Thiran JP (2010) Information theoretic combination of pattern classifiers. Pattern Recogn 43(10):3412–3421

    Article  Google Scholar 

  27. Pevny T, Fridrich J (2007) Merging markov and dct features for multi-class jpeg steganalysis. In: Electronic imaging 2007, international society for optics and photonics, pp 650,503–650,503

  28. Pevny T, Fridrich J (2008) Multiclass detector of current steganographic methods for jpeg format. IEEE Trans Inf Forensics Secur 3(4):635–650

    Article  Google Scholar 

  29. Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inf Forensics Secur 5(2):215–224

    Article  Google Scholar 

  30. Rokach L (2016) Decision forest: twenty years of research. Information Fusion 27:111–125

    Article  Google Scholar 

  31. Sarreshtedari S, Ghotbi M, Ghaemmaghami S (2009) One-third probability embedding: Less detectable lsb steganography. In: 2009 IEEE international conference on multimedia and expo. IEEE, pp 1002–1005

  32. Shipp CA, Kuncheva LI (2002) Relationships between combination methods and measures of diversity in combining classifiers. Information fusion 3(2):135–148

    Article  Google Scholar 

  33. Tan S, Zhang H, Li B, Huang J (2017) Pixel-decimation-assisted steganalysis of synchronize-embedding-changes steganography. IEEE Trans Inf Forensics Secur 12(7):1658–1670

    Article  Google Scholar 

  34. Thai TH, Retraint F, Cogranne R (2014) Statistical detection of data hidden in least significant bits of clipped images. Signal Process 98:263–274

    Article  Google Scholar 

  35. Wong CK, Easton MC (1980) An efficient method for weighted sampling without replacement. SIAM J Comput 9(1):111–113

    Article  MathSciNet  Google Scholar 

  36. Yang H, Moody J (1999) Feature selection based on joint mutual information. In: Proceedings of international ICSC symposium on advances in intelligent data analysis. Citeseer, pp 22–25

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Akhaee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toosi, R., Salehkalaibar, S. & Akhaee, M.A. Improved ensemble growing method for steganalysis of digital media. Multimed Tools Appl 78, 9877–9893 (2019). https://doi.org/10.1007/s11042-018-6526-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6526-z

Keywords

Navigation