[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A measure-driven method for normal mapping and normal map design of 3D models

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Normal mapping is one of the most important methods for photorealistic rendering. It preserves geometric attribute values on a simplified mesh. A normal map stores normal vectors for high-quality meshes in a 2D form. A simplified model is then rendered using these normal vectors. To keep a surface’s normal property in a map it first of all requires 2D parameterization. The most common approach to this is to divide the surface into several patches, where each patch has its own parameterization. However, this approach has some weakness when it comes to designing global normal maps. This paper presents a measure-driven method that can interactively direct design of normal maps on a 2D plane. This 2D plane has minimal distortion and, more importantly, it is possible to zoom in or shrink the area of interest. The resulting, novel framework serves as a powerful tool for normal mapping and normal map design. We provide a variety of experimental results to demonstrate the efficiency, robustness and efficacy of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alexandrov A (2005) Convex polyhedra (in russian), m.: Gostekhizdat 1950; english translation in springer monographs in mathematics

  2. Becker BG, Max NL (1993) Smooth transitions between bump rendering algorithms. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques. ACM, pp 183–190

  3. Blinn JF (1978) Simulation of wrinkled surfaces. In: ACM SIGGRAPH computer graphics, vol 12. ACM, pp 286–292

  4. Brenier Y (1991) Polar factorization and monotone rearrangement of vector-valued functions. Commun Pure Appl Math 44(4):375–417

    Article  MathSciNet  Google Scholar 

  5. Catmull E (1974) A subdivision algorithm for computer display of curved surfaces. Tech. rep., Utah Univ Salt Lake City School of Computing

  6. Chow B, Luo F et al. (2003) Combinatorial ricci flows on surfaces. J Differ Geom 63(1):97–129

    Article  MathSciNet  Google Scholar 

  7. Cignoni P, Montani C, Rocchini C, Scopigno R (1998) A general method for preserving attribute values on simplified meshes. In: Visualization’98. Proceedings. IEEE, pp 59–66

  8. Cohen J, Olano M, Manocha D (1998) Appearance-preserving simplification. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques. ACM, pp 115–122

  9. Cook RL (1984) Shade trees. ACM Siggraph Comput Graph 18(3):223–231

    Article  Google Scholar 

  10. De Goes F, Cohen-Steiner D, Alliez P, Desbrun M (2011) An optimal transport approach to robust reconstruction and simplification of 2d shapes. In: Computer Graphics forum, vol 30. Wiley Online Library, pp 1593–1602

  11. Desbrun M, Meyer M, Alliez P (2002) Intrinsic parameterizations of surface meshes. In: Computer Graphics forum, vol 21. Wiley Online Library, pp 209–218

  12. Doggett M, Hirche J (2000) Adaptive view dependent tessellation of displacement maps. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on graphics hardware. ACM, pp 59–66

  13. Dominitz A, Tannenbaum A (2010) Texture mapping via optimal mass transport. IEEE Trans Visual Comput Graph 16(3):419–433

    Article  Google Scholar 

  14. Floater MS (1997) Parametrization and smooth approximation of surface triangulations. Comput Aided Geom Des 14(3):231–250

    Article  MathSciNet  Google Scholar 

  15. Gehling MB, Hofsetz C, Musse SR (2007) Normalpaint: an interactive tool for painting normal maps. Vis Comput 23(9-11):897–904

    Article  Google Scholar 

  16. Gu X, Yau ST (2003) Global conformal surface parameterization. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on geometry processing. Eurographics Association, pp 127–137

  17. Gu XD, Yau ST (2008) Computational conformal geometry. International Press, Somerville

    MATH  Google Scholar 

  18. Gu X, Wang Y, Yau ST et al. (2003) Geometric compression using riemann surface structure. Commun Inf Syst 3(3):171–182

    MathSciNet  MATH  Google Scholar 

  19. Gu X, Wang Y, Chan TF, Thompson PM, Yau ST (2004) Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans Med Imaging 23(8):949–958

    Article  Google Scholar 

  20. Gu X, Luo F, Sun J, Yau ST (2016) Variational principles for minkowski type problems, discrete optimal transport, and discrete monge–ampère equations. Asian J Math, 20(2)

    Article  MathSciNet  Google Scholar 

  21. Gumhold S, Hüttner T (1999) Multiresolution rendering with displacement mapping. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on graphics hardware. ACM, pp 55–66

  22. Guskov I, Vidimče K, Sweldens W, Schröder P (2000) Normal meshes. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co, pp 95–102

  23. Haker S, Zhu L, Tannenbaum A, Angenent S (2004) Optimal mass transport for registration and warping. Int J Comput Vis 60(3):225–240

    Article  Google Scholar 

  24. Pharr M, Hanrahan P (1996) Geometry caching for ray-tracing displacement maps. In: Rendering Techniques 96: Proceedings of the Eurographics workshop in Porto. Portugal, June 17–19, 1996. Springer, p 31

  25. Heidrich W, Daubert K, Kautz J, Seidel HP (2000) Illuminating micro geometry based on precomputed visibility. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co, pp 455–464

  26. Heidrich W, Seidel H (1998) Ray-tracing procedural displacement shaders. Language 20(10):24

    Google Scholar 

  27. Hirche J, Ehlert A, Guthe S, Doggett M (2004) Hardware accelerated per-pixel displacement mapping. In: Proceedings of graphics interface 2004. Canadian Human-Computer Communications Society, pp 153–158

  28. Hormann K, Lévy B, Sheffer A (2007) Mesh parameterization: theory and practice

  29. Jin M, Kim J, Luo F, Gu X (2008) Discrete surface ricci flow. IEEE Trans Vis Comput Graph 14(5):1030–1043

    Article  Google Scholar 

  30. Joshi AA, Shattuck DW, Thompson PM, Leahy RM (2007) Surface-constrained volumetric brain registration using harmonic mappings. IEEE Trans Medical Imag 26 (12):1657–1669

    Article  Google Scholar 

  31. Kautz J, Seidel HP (2001) Hardware accelerated displacement mapping for image based rendering. In: Graphics Interface, vol 2001, pp 61–70

  32. Kautz J, Heidrich W, Seidel HP (2001) Real-time bump map synthesis. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on graphics hardware. ACM, pp 109–114

  33. Krishnamurthy V, Levoy M (1996) Fitting smooth surfaces to dense polygon meshes. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques. ACM, pp 313–324

  34. Lévy B, Mallet JL (1998) Non-distorted texture mapping for sheared triangulated meshes. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques. ACM, pp 343–352

  35. Lévy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal maps for automatic texture atlas generatio. In: Acm Transactions on graphics (tog), vol 21. ACM, pp 362–371

  36. Lipman Y, Daubechies I (2009) Surface comparison with mass transportation. arXiv:0912.3488

  37. Litke N, Droske M, Rumpf M, Schröder P (2005) An image processing approach to surface matching. In: Symposium on Geometry processing, vol 255. Citeseer, pp 207–216

  38. Max NL (1988) Horizon mapping: shadows for bump-mapped surfaces. Vis Comput 4(2):109–117

    Article  Google Scholar 

  39. Mérigot Q (2011) A multiscale approach to optimal transport. In:Computer Graphics forum, vol 30. Wiley Online Library, pp 1583–1592

  40. Meyer A, Neyret F (1998) Interactive volumetric textures. Render Techniq 98:157–168

    Article  Google Scholar 

  41. Nießner M, Loop C (2013) Analytic displacement mapping using hardware tessellation. ACM Trans Graph (TOG) 32(3):26

    Article  Google Scholar 

  42. Sander PV, Snyder J, Gortler SJ, Hoppe H (2001) Texture mapping progressive meshes. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques. ACM, pp 409–416

  43. Shi R, Zeng W, Su Z, Damasio H, Lu Z, Wang Y, Yau ST, Gu X (2013) Hyperbolic harmonic mapping for constrained brain surface registration. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 2531–2538

  44. Su Z, Sun J, Gu X, Luo F, Yau ST (2014) Optimal mass transport for geometric modeling based on variational principles in convex geometry. Eng Comput 30(4):475–486

    Article  Google Scholar 

  45. Su K, Cui L, Qian K, Lei N, Zhang J, Zhang M, Gu XD (2016) Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation. Comput Aided Geom De 46:76–91

    Article  MathSciNet  Google Scholar 

  46. Su K, Chen W, Lei N, Cui L, Jiang J, Gu XD (2016) Measure controllable volumetric mesh parameterization. Comput Aided Des 78:188–198

    Article  Google Scholar 

  47. Su K, Chen W, Lei N, Zhang J, Qian K, Gu X (2017) Volume preserving mesh parameterization based on optimal mass transportation. Comput Aided Des 82:42–56

    Article  MathSciNet  Google Scholar 

  48. Szirmay-Kalos L, Umenhoffer T (2008) Displacement mapping on the gpustate of the art. In: Computer Graphics forum, vol 27. Wiley Online Library, pp 1567–1592

  49. Ur Rehman T, Haber E, Pryor G, Melonakos J, Tannenbaum A (2009) 3d nonrigid registration via optimal mass transport on the gpu. Med Image Anal 13 (6):931–940

    Article  Google Scholar 

  50. Wang L, Wang X, Tong X, Lin S, Hu S, Guo B, Shum HY (2003) View-dependent displacement mapping. In: ACM Transactions on graphics (TOG), vol 22. ACM, pp 334–339

  51. Wang Y, Gupta M, Zhang S, Wang S, Gu X, Samaras D, Huang P (2008) High resolution tracking of non-rigid motion of densely sampled 3d data using harmonic maps. Int J Comput Vis 76(3):283–300

    Article  Google Scholar 

  52. Zhang D, Hebert M (1999) Harmonic maps and their applications in surface matching. In: IEEE Computer Society conference on computer vision and pattern recognition, 1999. vol 2. IEEE, pp 524–530

  53. Zhao X, Su Z, Gu XD, Kaufman A, Sun J, Gao J, Luo F (2013) Area-preservation mapping using optimal mass transport. IEEE Trans Visual Comput Graph 19(12):2838–2847

    Article  Google Scholar 

  54. Zhu L, Haker S, Tannenbaum A (2003) Area-preserving mappings for the visualization of medical structures. In: International Conference on medical image computing and computer-assisted intervention. Springer, pp 277–284

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China(Project Number:61772379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, K., Li, Y., Su, K. et al. A measure-driven method for normal mapping and normal map design of 3D models. Multimed Tools Appl 77, 31969–31989 (2018). https://doi.org/10.1007/s11042-018-6207-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6207-y

Keywords

Navigation