Abstract
Elastic preserving projections (EPP) is a classical manifold learning technique for dimensionality reduction, which has demonstrated good performance in pattern recognition. However, EPP is sensitive to the outliers because it makes use of the L2-norm for optimization. In this paper, we propose an effective and robust EPP version based on L1-norm maxmization (EPP-L1), which can learn the optimal projection vectors by maximizing the ratio of the global dispersion to the local dispersion using the L1-norm rather than L2-norm. The proposed method is proved to be feasible and also robust to outliers while overcoming the singular problem of the local scatter matrix for EPP. Experiments on five popular face image databases demonstrate the effectiveness of the proposed method.
Similar content being viewed by others
References
Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Trans Pattern Anal Mach Intell 19(7):711–720
Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Comput 15(6):1373–1396
Bengio Y, Paiement JF, Vincent P et al (2004) Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering[J]. Adv Neural Inf Proces Syst 16:177–184
Cai W (2017) A dimension reduction algorithm preserving both global and local clustering structure[J]. Knowl-Based Syst 118:191–203
Cai D, He X, Han J (2007) Isometric projection[C]// National Conference on Artificial Intelligence. AAAI Press 528–533
Guo Y, Ding G, Han J, et al (2016) Robust iterative quantization for efficient lp-norm similarity search[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. AAAI Press, 3382–3388
Harandi M, Salzmann M, Hartley R (2017) Dimensionality reduction on SPD manifolds: the emergence of geometry-aware methods[J]. IEEE transactions on pattern analysis and machine intelligence
He X, Cai D,Yan S, et al (2005) Neighborhood preserving embedding[C], Computer Vision, ICCV 2005. Tenth IEEE International Conference on. IEEE, 2:1208–1213
He X, Yan S, Hu Y et al (2005) Face recognition using Laplacianfaces[J]. IEEE Trans Pattern Anal Mach Intell 27(3):328–340
Howland P, Park H (2004) Generalizing discriminant analysis using the generalized singular value decomposition[J]. IEEE Trans Pattern Anal Mach Intell 26(8):995–1006
Huang S, Zhuang L (2016) Exponential discriminant locality preserving projection for face recognition[J]. Neurocomputing 208:373–377
Huang, GB, et al (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Vol. 1. No. 2. Technical Report 07–49, University of Massachusetts, Amherst
Jenatton R, Obozinski G, Bach FR (2010) Structured sparse principal component analysis[C]. AISTATS:366–373
Kwak N (2008) Principal component analysis based on L1-norm maximization[J]. IEEE Trans Pattern Anal Mach Intell 30(9):1672–1680
Kwak N (2014) Principal component analysis by Lp-norm maximization[J]. IEEE Trans Cybern 44(5):594–609
Li X, Pang Y, Yuan Y (2010) L1-norm-based 2DPCA[J]. IEEE Trans Syst Man Cybern B Cybern 40(4):1170–1175
Liu Y, Nie L, Liu L et al (2016) From action to activity: sensor-based activity recognition[J]. Neurocomputing 181:108–115
Liu Y, Liang Y, Liu S, et al. Predicting urban water quality with ubiquitous data[J]. arXiv preprint arXiv:1610.09462, 2016
Liu Y, Zheng Y, Liang Y, et al (2016) Urban water quality prediction based on multi-task multi-view learning[J]
Liu L, Cheng L, Liu Y, et al (2016) Recognizing complex activities by a probabilistic interval-based model[C]//AAAI, 30:1266–1272
Lu GF, Zou J, Wang Y et al (2016) L1-norm based null space discriminant analysis[J]. Multimedia Tools Appl:1–16
Lu Y, Wei Y, Liu L et al (2016) Towards unsupervised physical activity recognition using smartphone accelerometers[J]. Multimedia Tools Appl:1–19
Luo T, Hou C, Yi D et al (2016) Discriminative orthogonal elastic preserving projections for classification[J]. Neurocomputing 179:54–68
Martinez AM (1998) The AR face database[J]. CVC technical report 24
Nie F, Huang H, Ding C et al (2011) Robust principal component analysis with non-greedy L1-norm maximization[C]. Proceedings-International Joint Conference on Artificial Intelligence 22(1):1433
Pang Y, Yuan Y (2010) Outlier-resisting graph embedding[J]. Neurocomputing 73(4):968–974
Phillips PJ, Moon H, Rizvi SA et al (2000) The FERET evaluation methodology for face-recognition algorithms[J]. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104
Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding[J]. Science 290(5500):2323–2326
Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction[J]. Science 290(5500):2319–2323
The Olivetti & Oracle Research Laboratory Face Database of Faces. [Online]. Available: http://www.cam-orl.co.uk/facedatabase.html
Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86
Wang J (2016) Generalized 2-D principal component analysis by lp-norm for image analysis[J]. IEEE Trans Cybern 46(3):792–803
Wang Q, Gao Q, Xie D, et al. Robust DLPP with nongreedy L1-norm minimization and maximization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016
Yan S, Xu D, Zhang B et al (2007) Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Trans Pattern Anal Mach Intell 29(1)
Yang J, Zhang D, Yang J et al (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics[J]. IEEE Trans Pattern Anal Mach Intell 29(4):650–664
Yang W, Sun C, Zheng W (2016) A regularized least square based discriminative projections for feature extraction[J]. Neurocomputing 175:198–205
Yu M, Shao L, Zhen X et al (2016) Local feature discriminant projection[J]. IEEE Trans Pattern Anal Mach Intell 38(9):1908–1914
Yuan S, Mao X (2016) Optimal neighbor graph-based orthogonal tensor locality preserving projection for image recognition[J]. J Electron Imaging 25(6):063017–063017
Yuan S, Mao X (2017) Exponential elastic preserving projections for facial expression recognition[J]. Neurocomputing
Yuan S, Mao X, Chen L (2017) Multilinear spatial discriminant analysis for dimensionality reduction[J]. IEEE Transactions on Image Processing
Zang F, Zhang J, Pan J (2012) Face recognition using Elasticfaces[J]. Pattern Recogn 45(11):3866–3876
Zhang D, He J, Zhao Y et al (2014) Global plus local: a complete framework for feature extraction and recognition[J]. Pattern Recogn 47(3):1433–1442
Zheng W, Lin Z, Wang H (2014) L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction[J]. IEEE Trans Neural Netw Learn Syst 25(4):793–805
Zhong F, Zhang J (2013) Linear discriminant analysis based on L1-norm maximization[J]. IEEE Trans Image Process 22(8):3018–3027
Zhong F, Zhang J, Li D (2014) Discriminant locality preserving projections based on L1-norm maximization[J]. IEEE Trans Neural Netw Learn Syst 25(11):2065–2074
Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable and constructive criticisms that are very helpful to improve the quality of this paper. This work was supported by the National Science Foundation of China (Grant no.61603013).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yuan, S., Mao, X. & Chen, L. Elastic preserving projections based on L1-norm maximization. Multimed Tools Appl 77, 21671–21691 (2018). https://doi.org/10.1007/s11042-018-5608-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-018-5608-2