[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Elastic preserving projections based on L1-norm maximization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Elastic preserving projections (EPP) is a classical manifold learning technique for dimensionality reduction, which has demonstrated good performance in pattern recognition. However, EPP is sensitive to the outliers because it makes use of the L2-norm for optimization. In this paper, we propose an effective and robust EPP version based on L1-norm maxmization (EPP-L1), which can learn the optimal projection vectors by maximizing the ratio of the global dispersion to the local dispersion using the L1-norm rather than L2-norm. The proposed method is proved to be feasible and also robust to outliers while overcoming the singular problem of the local scatter matrix for EPP. Experiments on five popular face image databases demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  2. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  3. Bengio Y, Paiement JF, Vincent P et al (2004) Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering[J]. Adv Neural Inf Proces Syst 16:177–184

    Google Scholar 

  4. Cai W (2017) A dimension reduction algorithm preserving both global and local clustering structure[J]. Knowl-Based Syst 118:191–203

    Article  Google Scholar 

  5. Cai D, He X, Han J (2007) Isometric projection[C]// National Conference on Artificial Intelligence. AAAI Press 528–533

  6. Guo Y, Ding G, Han J, et al (2016) Robust iterative quantization for efficient lp-norm similarity search[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. AAAI Press, 3382–3388

  7. Harandi M, Salzmann M, Hartley R (2017) Dimensionality reduction on SPD manifolds: the emergence of geometry-aware methods[J]. IEEE transactions on pattern analysis and machine intelligence

  8. He X, Cai D,Yan S, et al (2005) Neighborhood preserving embedding[C], Computer Vision, ICCV 2005. Tenth IEEE International Conference on. IEEE, 2:1208–1213

  9. He X, Yan S, Hu Y et al (2005) Face recognition using Laplacianfaces[J]. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  10. Howland P, Park H (2004) Generalizing discriminant analysis using the generalized singular value decomposition[J]. IEEE Trans Pattern Anal Mach Intell 26(8):995–1006

    Article  Google Scholar 

  11. Huang S, Zhuang L (2016) Exponential discriminant locality preserving projection for face recognition[J]. Neurocomputing 208:373–377

    Article  Google Scholar 

  12. Huang, GB, et al (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Vol. 1. No. 2. Technical Report 07–49, University of Massachusetts, Amherst

  13. Jenatton R, Obozinski G, Bach FR (2010) Structured sparse principal component analysis[C]. AISTATS:366–373

  14. Kwak N (2008) Principal component analysis based on L1-norm maximization[J]. IEEE Trans Pattern Anal Mach Intell 30(9):1672–1680

    Article  Google Scholar 

  15. Kwak N (2014) Principal component analysis by Lp-norm maximization[J]. IEEE Trans Cybern 44(5):594–609

    Article  Google Scholar 

  16. Li X, Pang Y, Yuan Y (2010) L1-norm-based 2DPCA[J]. IEEE Trans Syst Man Cybern B Cybern 40(4):1170–1175

    Article  Google Scholar 

  17. Liu Y, Nie L, Liu L et al (2016) From action to activity: sensor-based activity recognition[J]. Neurocomputing 181:108–115

    Article  Google Scholar 

  18. Liu Y, Liang Y, Liu S, et al. Predicting urban water quality with ubiquitous data[J]. arXiv preprint arXiv:1610.09462, 2016

  19. Liu Y, Zheng Y, Liang Y, et al (2016) Urban water quality prediction based on multi-task multi-view learning[J]

    Google Scholar 

  20. Liu L, Cheng L, Liu Y, et al (2016) Recognizing complex activities by a probabilistic interval-based model[C]//AAAI, 30:1266–1272

  21. Lu GF, Zou J, Wang Y et al (2016) L1-norm based null space discriminant analysis[J]. Multimedia Tools Appl:1–16

  22. Lu Y, Wei Y, Liu L et al (2016) Towards unsupervised physical activity recognition using smartphone accelerometers[J]. Multimedia Tools Appl:1–19

  23. Luo T, Hou C, Yi D et al (2016) Discriminative orthogonal elastic preserving projections for classification[J]. Neurocomputing 179:54–68

    Article  Google Scholar 

  24. Martinez AM (1998) The AR face database[J]. CVC technical report 24

  25. Nie F, Huang H, Ding C et al (2011) Robust principal component analysis with non-greedy L1-norm maximization[C]. Proceedings-International Joint Conference on Artificial Intelligence 22(1):1433

    Google Scholar 

  26. Pang Y, Yuan Y (2010) Outlier-resisting graph embedding[J]. Neurocomputing 73(4):968–974

    Article  Google Scholar 

  27. Phillips PJ, Moon H, Rizvi SA et al (2000) The FERET evaluation methodology for face-recognition algorithms[J]. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  28. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding[J]. Science 290(5500):2323–2326

    Article  Google Scholar 

  29. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction[J]. Science 290(5500):2319–2323

    Article  Google Scholar 

  30. The Olivetti & Oracle Research Laboratory Face Database of Faces. [Online]. Available: http://www.cam-orl.co.uk/facedatabase.html

  31. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  32. Wang J (2016) Generalized 2-D principal component analysis by lp-norm for image analysis[J]. IEEE Trans Cybern 46(3):792–803

    Article  Google Scholar 

  33. Wang Q, Gao Q, Xie D, et al. Robust DLPP with nongreedy L1-norm minimization and maximization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016

    Google Scholar 

  34. Yan S, Xu D, Zhang B et al (2007) Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Trans Pattern Anal Mach Intell 29(1)

  35. Yang J, Zhang D, Yang J et al (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics[J]. IEEE Trans Pattern Anal Mach Intell 29(4):650–664

    Article  Google Scholar 

  36. Yang W, Sun C, Zheng W (2016) A regularized least square based discriminative projections for feature extraction[J]. Neurocomputing 175:198–205

    Article  Google Scholar 

  37. Yu M, Shao L, Zhen X et al (2016) Local feature discriminant projection[J]. IEEE Trans Pattern Anal Mach Intell 38(9):1908–1914

    Article  Google Scholar 

  38. Yuan S, Mao X (2016) Optimal neighbor graph-based orthogonal tensor locality preserving projection for image recognition[J]. J Electron Imaging 25(6):063017–063017

    Article  Google Scholar 

  39. Yuan S, Mao X (2017) Exponential elastic preserving projections for facial expression recognition[J]. Neurocomputing

  40. Yuan S, Mao X, Chen L (2017) Multilinear spatial discriminant analysis for dimensionality reduction[J]. IEEE Transactions on Image Processing

  41. Zang F, Zhang J, Pan J (2012) Face recognition using Elasticfaces[J]. Pattern Recogn 45(11):3866–3876

    Article  MATH  Google Scholar 

  42. Zhang D, He J, Zhao Y et al (2014) Global plus local: a complete framework for feature extraction and recognition[J]. Pattern Recogn 47(3):1433–1442

    Article  MATH  Google Scholar 

  43. Zheng W, Lin Z, Wang H (2014) L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction[J]. IEEE Trans Neural Netw Learn Syst 25(4):793–805

    Article  Google Scholar 

  44. Zhong F, Zhang J (2013) Linear discriminant analysis based on L1-norm maximization[J]. IEEE Trans Image Process 22(8):3018–3027

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhong F, Zhang J, Li D (2014) Discriminant locality preserving projections based on L1-norm maximization[J]. IEEE Trans Neural Netw Learn Syst 25(11):2065–2074

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable and constructive criticisms that are very helpful to improve the quality of this paper. This work was supported by the National Science Foundation of China (Grant no.61603013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, S., Mao, X. & Chen, L. Elastic preserving projections based on L1-norm maximization. Multimed Tools Appl 77, 21671–21691 (2018). https://doi.org/10.1007/s11042-018-5608-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5608-2

Keywords

Navigation