[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Texture based on geostatistic for glaucoma diagnosis from fundus eye image

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Glaucoma is an ocular disorder that can permanently damage patient vision. Initially, it reduces the visual field, and may cause blindness. Effective methods for early detection is crucial for avoiding significant damages of the patient vision. The use of CAD (Computer-Aided Detection) and CADx (Computer-Aided Diagnosis) systems has contributed to increase the chances of detection and precise diagnoses, assisting experts’ decision making on treatment regarding glaucoma. This paper proposes a method that analyzes the texture of the optical disk image region to diagnose glaucoma. Such analysis is done using the Local Binary Pattern (LBP) to represent the optic disk region, and geostatistical functions to describe texture patterns. The obtained texture features are used for classification based on Support Vector Machine. The proposed method presented as best results a sensitivity of 95%, accuracy of 91% and specificity of 88% in the diagnosis of glaucoma. The method has proved to be promising in assisting glaucoma diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Acharya U R, Ng E, Eugene L W J, Noronha K P, Min L C, Nayak K P, Bhandary S V (2015) Decision support system for the glaucoma using gabor transformation. Biomed Signal Process Control 15:18–26

    Article  Google Scholar 

  2. Acharya U R, Mookiah M R K, Koh J E, Tan J H, Bhandary S V, Rao A K, Fujita H, Hagiwara Y, Chua C K, Laude A (2016) Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index. Comput Biol Med 75:54–62

    Article  Google Scholar 

  3. Almeida J D S, Silva A C, De Paiva A C, Teixeira J A M (2012) Computational methodology for automatic detection of strabismus in digital images through hirschberg test. Comput biol Med 42(1):135–146

    Article  Google Scholar 

  4. Bland M (2015) An introduction to medical statistics. Oxford University Press, UK

    MATH  Google Scholar 

  5. Carvalho Filho A O, De Sampaio W B, Silva A C, De Paiva A C, Nunes R A, Gattass M (2014) Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. Artif Intell Med 60(3):165–177

    Article  Google Scholar 

  6. Chakrabarty L, Joshi G D, Chakravarty A, Raman G V, Krishnadas S, Sivaswamy J (2015) Automated detection of glaucoma from topographic features of the optic nerve head in color fundus photographs. Journal of glaucoma

  7. Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27. software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  8. Claro M, Santos L, Silva W, AraUjo F, et al. (2015) Automatic detection of glaucoma using disc optic segmentation and feature extraction Computing Conference (CLEI), vol 2015. Latin American, IEEE, pp 1–7

  9. Devi TG, Sudha S, Suraj P (2015) Glaucoma detection from retinal images. In: 2015 2nd International Conference on Electronics and Communication Systems (ICECS), IEEE, pp 423–428

  10. Dubey M (2008) Design of genetic algorithm based fuzzy logic power system stabilizers in multimachine power system. In: 2008. POWERCON 2008. Joint International Conference on Power System Technology and IEEE Power India Conference, IEEE, pp 1–6

  11. Köhler T, Bock R, Hornegger J, Michelson G (2015) Computer-aided diagnostics and pattern recognition: Automated glaucoma detection. In: Teleophthalmology in Preventive Medicine, Springer, pp 93–104

  12. Maheshwari S, Pachori RB, Acharya UR (2016) Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images

  13. Mookiah M R K, Acharya U R, Lim C M, Petznick A, Suri J S (2012) Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl-Based Syst 33:73–82

    Article  Google Scholar 

  14. Nayak J, Acharya R, Bhat P S, Shetty N, Lim T C (2009) Automated diagnosis of glaucoma using digital fundus images. J Med Syst 33(5):337–346

    Article  Google Scholar 

  15. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  16. Salam A A, Akram M U, Wazir K, Anwar S M, Majid M (2015) Autonomous glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), IEEE, pp 370–374

  17. Silva A C, Carvalho P C P, Gattass M (2004) Analysis of spatial variability using geostatistical functions for diagnosis of lung nodule in computerized tomography images. Pattern Anal Appl 7(3):227– 234

    Article  MathSciNet  Google Scholar 

  18. Tham Y C, Li X, Wong T Y, Quigley H A, Aung T, Cheng C Y (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    Article  Google Scholar 

  19. Trucco E, Ruggeri A, Karnowski T, Giancardo L, Chaum E, Hubschman J P, al Diri B, Cheung C Y, Wong D, Abramoff M et al (2013) Validating retinal fundus image analysis algorithms: Issues and a proposalvalidating retinal fundus image analysis algorithms. Invest Ophthalmol Vis Sci 54(5):3546–3559

    Article  Google Scholar 

  20. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  21. Xu Y, Jia X, Hu M, Sun X (2015) Feature extraction from optic disc and cup boundary lines in fundus images based on isnt rule for glaucoma diagnosis. J Med Imaging Health Inf 5(8):1833–1838

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson Alves de Sousa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, J.A., de Paiva, A.C., Sousa de Almeida, J.D. et al. Texture based on geostatistic for glaucoma diagnosis from fundus eye image. Multimed Tools Appl 76, 19173–19190 (2017). https://doi.org/10.1007/s11042-017-4608-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4608-y

Keywords

Navigation