[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Thermal comfort research on human CT data modeling

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presented a modeling method based on L-W Surface. We obtained our body CT data by CT scan, and get simulation manikin through the 3D reconstruction. We gridded manikin by thermal environment of the digital home, then build multi-scale coupling calculated model based on three-dimensional grid manikins and 25-node physiological model. At last, this paper described the body’s adjustment process from the physical point of view, and experimental results showed that the performance of clothing’s heat and moisture transfer could be dynamically simulated by computer. It also could get simulation effect of human heat and moisture feeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng Y, Niu J, Gao N (2012) Thermal comfort models: a review and numerical investigation. Build Environ 47:13–22

    Article  Google Scholar 

  2. Havenith G, Heus R, Lotens WA (1990a) Resultant clothing insulation––a function of body movement, posture, wind, clothing fit and ensemble thickness[J]. Ergonomics 33(1):67–84

    Article  Google Scholar 

  3. Havenith G, Heus R, Lotens WA (1990b) Clothing ventilation, vapor resistance and permeability index_changes due to posture, movement and wind[J]. Ergonomics 33(8):989–1005

    Article  Google Scholar 

  4. R. Holopainen (2012) A human thermal model for improved thermal comfort, Ph. D. Thesis, Aalto University

  5. Jia N, Yu L, Yang KX et al (2016) A novel exercise Thermophysiology comfort prediction model with fuzzy logic[J]. Mob Inf Syst. doi:10.1155/2016/8586493

  6. Li Y, Wang Z, Hu J Y (1999) Mathematical simulation and experimental verification of fabric thermal and moisture perceptions∥the SEM Annual Conference on The Interdependence Between Theoretical, Experimental and Computational Mechanics[C].Cincinnati, USA

  7. Li Y, QY Zhu, and ZX Luo (2001) Numerical simulation of heat transfer coupled with moisture sorption and liquid transport in porous textiles. In the 6th Asian Textile Conference. Hong Kong

  8. Luo X, Nie H et al (2002) Recurrence surfaces on arbitrary quadrilateral mesh. J Comput Appl Math 144:221–232

    Article  MathSciNet  MATH  Google Scholar 

  9. Luo XN, Liu N, Gao CY (2004) Fairing geometric modeling based on 4-point interpolatory subdivision scheme. J Comput Appl Math 163(1):189–197

    Article  MathSciNet  MATH  Google Scholar 

  10. Murakami S, Kato S, Zeng J (1998) Combined simulation of airflow, radiation and moisture transport for heat release from human body[J]. Roomvent 98(b):141–150

    Google Scholar 

  11. Shin-ichi Tanabe, Kozo Kobayashi, Junta Nakano, Yoshiichi Ozeki (2002) Evaluation of Thermal comfort using combined multi-node termoregulation (65MN) and radiation models and computational fluid dynamics (CFD), Energy and Buildings 34(6):637–646

  12. Wang R, Li Y et al (2004) Rational recurrence curves and recurrence surfaces in multivariate B-form on some regions. J Comput Appl Math 163:277–285

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang R, Du H, Zhou F, Deng D, Liu Y (2014) An adaptive neural fuzzy network clothing comfort evaluation model and application in digital home. Multimedia Tools and Applications 71:395–410

    Article  Google Scholar 

  14. Yan C, Zhang Y, Dai F et al (2013) Highly parallel framework for HEVC motion estimation on many-Core platform[C]// data compression conference. IEEE Computer Society 63-72

  15. Yan C, Zhang Y, Xu J et al (2014a) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors[J]. IEEE Signal Processing Lett 21(5):573–576

    Article  Google Scholar 

  16. Yan C, Zhang Y, Xu J et al (2014b) Efficient parallel framework for HEVC motion estimation on many-Core processors[J]. IEEE Trans Circuits Syst Video Technol 24(12):2077–2089

    Article  Google Scholar 

  17. Yan C, Zhang Y, Dai F et al (2014c) Parallel deblocking filter for HEVC on many-core processor[J]. Electron Lett 50(5):367–368

    Article  Google Scholar 

  18. Yan C, Zhang Y, Dai F et al (2014d) Efficient parallel HEVC intra-prediction on many-core processor[J]. Electron Lett 50(11):805–806

    Article  Google Scholar 

  19. Zhu F, Yu Z, Qianqian F, Dehong X (2013) Moisture diffusivity in structure of random fractal fiber bed. Physics Letter A 377:2324–2328

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The Project was supported by the National Natural Science Foundation of China (No.61402185), Natural Science Foundation of Guangdong Province (No. 2015A030313382), and Guangdong Provincial Public Research and Capacity Building Foundation funded project (Nos. 2016A020223012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhen Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Wang, Z., Wang, F. et al. Thermal comfort research on human CT data modeling. Multimed Tools Appl 77, 6311–6326 (2018). https://doi.org/10.1007/s11042-017-4537-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4537-9

Keywords

Navigation