Abstract
In this paper, a color image retrieval scheme based on quadtree classified vector quantization (QCVQ) is proposed. This scheme not only captures intra-block correlation but also exploits the visual importance of image blocks to efficiently describe the content of images in a compressed domain. In the proposed algorithm, a query image is first divided by quadtree segmentation and then classified into smooth and high-detail blocks. For high-detail blocks, the local thresholding classifier with 28 edge binary templates is employed to extract a variety of visually important regions which are edge intensive. After all of the blocks in the image are encoded by the pre-trained QCVQ codebook, the indices in the compressed domain are obtained. Finally, the frequencies of indices are counted to build the index histogram as a feature of the query image. Simulation results demonstrate that our proposed scheme yields the better retrieval performance compared to the well-known vector quantization (VQ)-based image retrieval method and three other techniques. These results show that quadtree segmentation and edge style classification are indeed helpful for improving the performance of content-based image retrieval.
Similar content being viewed by others
References
Ajay HD, James AS (2005) Content-based image retrieval via vector quantization. Lect Notes Comput Sci 3804:502–509
Arnold WMS, Marcel W, Simone S, Amarnath G, Ramesh J (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380
Brown M, Susstrunk S (2011) Multi-spectral SIFT for scene category recognition. IEEE Conference on Computer Vision and Pattern Recognition 177–184
Greg P, Ramin Z, Justin M (1996) Comparing images using color coherence vectors. Proc ACM Multimed 96:65–73
Guoping Q (2003) Color image indexing using BTC. IEEE Trans Image Process 12(1):93–101
Hamid AM, Taher TK, Amir HR, Mahdi (2005) S-T Wavelet correlogram: a new approach for image indexing and retrieval. Pattern Recogn 38:2506–2518
Hossein N, Saeid S (2005) Object-based image indexing and retrieval in DCT domain using clustering techniques. Proc World Acad Sci Eng Technol 3
Hrovje D, Nikola R, Dinko B, Jurica U (2000) Local thresholding classified vector quantization with memory reduction. Image Signal Process Anal
Idris F, Panchanathan S (1995) Storage and retrieval of compressed images. IEEE Trans Comput Electron 41(3):937–941
Idris F, Panchanathan S (1997) Image and video indexing using vector quantization visual computing and communications laboratory
James ZW, Gio W, Oscar F, Sha-Xin W (1997) Wavelet-based image indexing techniques with partial sketch retrieval capability. In: Proceedings of the Fourth Forum on Research and Technology Advances in Digital Libraries 13–24
James ZW, Jia L, Gio W (2001) SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23:947–963
Jing L, Allinson NM (2008) A comprehensive review of current local features for computer vision. Neurocomputing 71(10–12):1771–1787
Jing H, Kumar SR, Mandar M, Wei-Jing Z, Ramin Z (1997) Image indexing using color correlogram. Proc Conf Comp Vision Pattern Recog 97:762–768
Kokare M, Biswas PK, Chatterji BN (2007) Texture image retrieval using rotated wavelet filters. Pattern Recogn Lett 28(10):1240–1249
Liapis S, Tziritas G (2004) Color and texture image retrieval using chromaticity histograms and wavelet frames. IEEE Trans Multimed 6(5):676–686
Lu Z-C, Chang C-C (2007) Color image retrieval technique based on color features and image bitmap. Inf Process Manag 43(2):461–472
Manjunath B, Ohm JR, Vasudevan V, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11(6):703–715
Michael JS, Dana HB (1991) Color indexing. Int J Comput Vis 7(1):11–32
MIT Vision and Modeling Group, Vision Texture. [Online]. Available: http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
Neetu SS, Paresh RS, Jaikaran SS (2011) Efficient CBIR using color histogram processing. Signal Image Process 2(1):94–112
Paschos G, Radev I, Prabakar N (2003) Image content-based retrieval using chromaticity moments. IEEE Trans Knowl Data Eng 15(5):1069–1072
Quweider MK, Salari E (1996) Efficient classification and codebook design for CVQ. IEE Proc Vision Image Signal Process 143(6):344–352
Ramamurthi B, Gersho A (1986) Classified vector quantization of images. IEEE Trans Commun 34(11):1105–1115
Robert MG (1982) Vector quantization. IEEE Trans Inf Theory 28:157–166
Salih, ND, Besar R, Abas FS (2011) Multi-level shape description technique systems. Proceedings of the 5th International Conference on IT & Multimedia at UNITEN
Schaefer G (2002) Compressed domain image retrieval by comparing vector quantization codebooks. Visual Commun Image Process 959–966
Shyh-Wei T, Guojun L (2007) Image indexing and retrieval based on vector quantization. Pattern Recogn 40(11):3299–3316
Van de Sande KEA, Gevers T, Snoek CGM (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32(9):1582–1596
Yamazaki T, Fujikawa T, Katto J (2012) Improving the performance of SIFT using bilateral filter and its application to generic object recognition. IEEE Int Conf Acoust Speech Signal Process 945–948
Yang SH, Yang SS (1996) New classified vector quantization with quadtree segmentation for image coding. Int Conf Signal Process 2:1051–1054
Young R, Thomas SH (1999) Image retrieval: Current techniques, promising, directions, and open issues. J Vis Commun Image Represent 10:39–62
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, HH., Ding, JJ. & Sheu, HT. Image retrieval based on quadtree classified vector quantization. Multimed Tools Appl 72, 1961–1984 (2014). https://doi.org/10.1007/s11042-013-1492-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-013-1492-y