Abstract
One of the major concerns for fruit selling companies, at present, is to find an effective way for rapid classification and detection of fruit defects. Olive is one of the most important agricultural product, which receives great attention from fruit and vegetables selling companies, for its utilization in various industries such as oils and pickles industry. The small size and multiple colours of the olive fruit increases the difficulty of detecting the external defects. This paper presents new efficient methods for detecting and classifying automatically the external defects of olive fruits. The proposed techniques can separate between the defected and the healthy olive fruits, and then detect and classify the actual defected area. The proposed techniques are based on texture analysis and the homogeneity texture measure. The results and the performance of proposed techniques were compared with varies techniques such as Canny, Otsu, local binary pattern algorithm, K-means, and Fuzzy C-Means algorithms. The results reveal that proposed techniques have the highest accuracy rate among other techniques. The simplicity and the efficiency of the proposed techniques make them appropriate for designing a low-cost hardware kit that can be used for real applications.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arivazhagan, S., Shebiah, R. N., Nidhyanandhan, S. S., & Ganesan, L. (2010). Fruit recognition using color and texture features. Journal of Emerging Trends in Computing and Information Sciences, 1(2), 90.
Bianconi, F., Ceccarelli, L., Fernández, A., & Saetta, S. A. (2014). A sequential machine vision procedure for assessing paper impurities. Computers in Industry, 65(2), 325–332.
Chihaoui, M., Elkefi, A., Bellil, W., & Amar, C. (2016). A novel face recognition system based on skin detection, HMM and LBP. International Journal of Computer Science and Information Security (IJCSIS), 14(6), 308–316.
Chudasama, D., & Patel, T. (2015). Image segmentation using morphological operations. International Journal of Computer Applications, 117(18), 0975–8887.
Déniz, O., Castrillón, M., & Hernández, M. (2003). Face recognition using independent component analysis and support vector machines. Pattern Recognition Letters, 24(13), 2153–2157.
Furferi, R., Governi, L., & Volpe, Y. (2010). ANN-based method for olive ripening index automatic prediction. Journal of Food Engineering, 101(3), 318–328.
Gandhi, I., & Andiyammal, M. P. (2015). Infected Fruit Part Detection Using Clustering. International Journal of Current Research, 7(03), 13866–13871.
Gatica, G., Best, S., Ceroni, J., & Lefranc, G. (2013). Olive fruits recognition using neural networks. Procedia Computer Science, 17, 412–419.
Guoying, Z., & Pietikainen, M. (2007). Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 915–928.
Huang, J., Kumar, S.R., Mitra, M., Zhu, W. J., & Zabih, R. (1997). Image indexing using color correlograms. In Proceedings of IEEE international conference on computer vision and pattern recognition, (pp. 762–768).
Jitendrasinh, G. R. (2015). A review on fuzzy C-mean clustering algorithm. International Journal of Modern Trends in Engineering and Research (IJMTER), 02(02), 751–754.
Khade, S., Pandhare, P., Navale, S., Patil, K., & Gaikwad, V. (2016). Fruit quality evaluation using k-means clustering segmentation approach. International Journal of Advances in Science Engineering and Technology, 4(2), 27–31.
Khoje, S. A., Bodhe, S. K., & Adsul, A. (2013). Automated skin defect identification system for fruit grading based on discrete curvelet transform. International Journal of Engineering and Technology (IJET), 5(4), 3251.
Vala, H. J., & Baxi, A. (2013). A review on Otsu image segmentation algorithm. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2(2), 387–389.
Kith, K., Van Wyk, B. J., & Van Wyk, M. L. A. (2008). The normalized wavelet descriptor for shape retrieval. International Journal of Wavelets, Multiresolution and Information Processing, 6(1), 25–36.
Liu, L., Fieguth, P., Zhao, G., Pietikäinen, M., & Hu, D. (2016a). Extended local binary patterns for face recognition. Information Sciences, 358–359, 56–72.
Liu, L., Lao, S., Fieguth, P. W., et al. (2016b). Median robust extended local binary pattern for texture classification. IEEE Transactions on Image Processing, 25(3), 1368–1381.
Ma, W. Y., & Zhang, H. J. (2013). Image indexing and retrieval-in handbook of grading based on discrete curvelet transform. International Journal of Engineering and Technology (IJET), 5(4), 4763–4769.
Malakar, A., & Mukherjee, J. (2013). Image clustering using color moments, histogram, edge and K-means clustering. International Journal of Science and Research (IJSR), 2(1), 2319.
Manual_CV-A20CL_CV-A80CL_Aug08 Digital monochrome / color HDTV (1080p) CMOS camera, 2008 JAI.
Mia, S., & Rahman, M. M. (2018). An efficient image segmentation method based on linear discriminant analysis and K-means algorithm with automatically splitting and merging clusters. International Journal of Imaging and Robotics, 18(1), 62–72.
Nashat, A., & Hassan, N. (2017). Automatic segmentation and classification of olive fruits batches based on discrete wavelet transform and visual perceptual texture features. International Journal of Wavelets, Multiresolution and Information Processing, 16(1), 1850003.
Nayagam, R. D. (2016). Implementation of external defects detection system to classify the fruits. International Journal of Innovative Research in Computer and Communication Engineering, 4(2), 1850003.
Puerto, D. A., Gila, D. M. M., García, J. G., & Ortega, J. G. (2015). Sorting olive batches for the milling process using image processing. Sensors, 15, 15738–15754.
Pujitha, N., Swathi, C., & Kanchana, V. (2016). Detection of external defects on mango. International Journal of Applied Engineering Research, 11(7), 4763–4769.
Safad, T., Kang, M., Leite, I. C. C., & Vidakovic, B. (2016). Wavelet-based spectral descriptors for detection of damage in sunflower seeds. International Journal of Wavelets, Multiresolution and Information Processing, 14(4), 1650027.
Satone, M., Diwakar, S., & Joshi, V. (2017). Automatic bruise detection in fruits using thermal images. International Journal of Advanced Research in Computer Science and Software Engineering, 7(5), 727–732.
Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13, 146–165.
Sugiyama, M. (2006). Local fisher discriminant analysis for supervised dimensionality reduction. In Proceedings of the 23rd international conference on machine learning, Pittsburgh, PA, June 25–29 (pp. 905–912).
Suresha, M., & Danti, A. (2012). Construction of co-occurrence matrix using gabor wavelets for classification of arecanuts by decision trees. International Journal of Applied Information Systems (IJAIS), 4(6), 33.
Vijayarajan, R., & Muttan, S. (2016). Spatial weighted fuzzy c-means clustering based principal component averaging image fusion. International Journal of Tomography & Simulation, 29(3), 104–113.
Wang, J. (2013). A visual word-based leaf classification scheme. International Journal of Applied Mathematics and Statistics, 51(22), 233–240.
Zeng, Q. M., Zhu, T. L., Zhuang, X. Y., & Zheng, M. X. (2015). Periodic wavelet descriptor of plant leaf and its application in botany. International Journal of Wavelets, Multiresolution and Information Processing, 13(6), 1550043.
Zhang, L., Yan, L., & Pingling, D. (2017a). Odor recognition in multiple e-nose systems with cross-domain discriminative subspace learning. IEEE Transactions on Instrumentation and Measurement, 66(7), 1679–1692.
Zhang, L., Yang, J., & Zhang, D. (2017b). Domain class consistency based transfer learning for image classification across domains. Information Sciences, 418–419, 242–257.
Zhang, L., & Zhang, D. (2016). Robust visual knowledge transfer via extreme learning machine-based domain adaptation. IEEE Transactions on Image Processing, 25(10), 4959–4973.
Zhang, L., & Zhang, D. (2017). Evolutionary cost-sensitive extreme learning machine. IEEE Transactions on Neural Networks and Learning Systems, 28(12), 3045–3060.
Zhang, L., Zuo, W., & Zhang, D. (2016). Latent sparse domain transfer learning for visual adaptation. IEEE Transactions on Image Processing, 25(3), 1177–1191.
Zhang, Y., & Wu, L. (2012). Classification of fruits using computer vision and a multiclass support vector machine. Sensors, 12, 12489–12505.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hussain Hassan, N.M., Nashat, A.A. New effective techniques for automatic detection and classification of external olive fruits defects based on image processing techniques. Multidim Syst Sign Process 30, 571–589 (2019). https://doi.org/10.1007/s11045-018-0573-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-018-0573-5
Keywords
- Image segmentation techniques
- Features extraction
- Image convolution techniques
- Artificial vision techniques
- Olive fruit classification techniques