[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A stochastic image denoising method based on adaptive patch-size

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

A new stochastic nonlocal denoising method based on adaptive patch-size is presented. The quality of restored image is improved by choosing the optimal nonlocal similar patch-size for each site of image individually. The method contains two phase. The first phase is to search the similar patches base on adaptive patch-size. The second phase is to design the denoising algorithm by making use of similar image patches obtained in the first step. The multiple clusters of similar patches for each pixel point are searched by using Markov-chain Monte Carlo sampling many times. Following, we adjust the patch-size according to the consistency of multiple clusters. This processing is repeated until we obtain the optimal patch-size and corresponding optimal patch cluster. We get the estimation of noise-free patch cluster by employing modified two-directional non-local method. Furthermore, the denoised image is obtained by using the method of superposition approach. The theoretical analysis and simulation results show that the method is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. IEEE International Conference on Computer Vision and Pattern Recognition, 2, 20–25.

    MATH  Google Scholar 

  • Cheng, G., Yang, C., Yao, X., Guo, L., & Han, J. (2018). When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Transactions on Geoscience and Remote Sensing,. https://doi.org/10.1109/TGRS.2017.2783902.

    Google Scholar 

  • Cheng, G., Zhou, P., & Han, J. (2016). Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transaction on Geoscience and Remote Sensing, 54(12), 7405–7415.

    Article  Google Scholar 

  • Dabov, K., Foi, V., & Katkovnik, V. (2007). Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transaction on Image Processing, 16(8), 2080–2095.

    Article  Google Scholar 

  • John, I. (1996). Fast noise variance estimation. Computer Vision and Image Understanding, 64(2), 300–302.

    Article  MathSciNet  Google Scholar 

  • Levin, A., Nadler, B., Durand, F., Freeman, W. T. (2012). Patch Complexity, finite pixel correlations and optimal denoising. In Lecture notes in computer science (Vol. 7576, pp. 73–86).

  • Mahmoudi, M., & Sapiro, G. (2005). Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE Signal Processing Letters, 12(12), 839–842.

    Article  Google Scholar 

  • Orchard, J., Ebrahimi, M., Wong, A. (2008). Effcient nonlocal-means denoising using the SVD. In Proceedings of IEEE international conference on image processing.

  • Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60, 259–268.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W., & Feng, X. (2008). Anisotropic diffusion with nonlinear structure tensor. Multiscale Modeling and Simulation, 7(2), 963–977.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600612.

    Article  Google Scholar 

  • Wong, A., Mishra, A. K., Zhang, W., Fieguth, P. W., & Clausi, D. A. (2011). Stochastic image denoising based on Markov-Chain Monte Carlo sampling. Signal Processing, 91(8), 2112–2120.

    Article  MATH  Google Scholar 

  • Yao, X., Han, J., Zhang, D., & Nie, F. (2017). Revisiting co-saliency detection: A novel approach based on two-stage multi-view spectral rotation co-clustering. IEEE Transactions on Image Processing, 26(7), 3196–3209.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, D., Meng, D., & Han, J. (2017a). Co-saliency detection via a self-paced multiple-instance learning framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(5), 865–878.

    Article  Google Scholar 

  • Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017b). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142–3155.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, L., Dong, W., Zhang, D., & Shi, G. (2010). Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognition, 43(4), 1531–1549.

    Article  MATH  Google Scholar 

  • Zhang, L., Yang, J., & Zhang, D. (2017c). Domain class consistency based transfer learning for image classification across domains. Information Sciences, 419, 242–257.

    Article  Google Scholar 

  • Zhang, L., Zuo, W., & Zhang, D. (2016). LSDT: Latent sparse domain transfer learning for visual adaptation. IEEE Transactions on Image Processing, 25(3), 1177–1191.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Feng, X., & Wang, W. (2013). Two-direction nonlocal model for image denoising. IEEE Transactions on Image Processing, 22(1), 408–412.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., & Wu, X. (2008). Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Transactions on Image Processing, 17(6), 887–896.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is Supported by National Natural Science Foundation of China (NSFC 11601420) and Shanxi province education department fund item (No:16JK1708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Zhao, Zq., Li, Xp. et al. A stochastic image denoising method based on adaptive patch-size. Multidim Syst Sign Process 30, 705–725 (2019). https://doi.org/10.1007/s11045-018-0577-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0577-1

Keywords

Navigation