Abstract
The application of two-dimensional (2-D) infinite impulse response (IIR) spatially-bandpass (SBP) filters as a digital beamformer for a wide spectrum of practical applications spanning wireless cognitive radio communications, doppler radar, and radio astronomy instrumentation is discussed. The paper starts with an introduction of the recently proposed 2-D SBP filter. The first application is a spectrum sensing scheme for dynamic spectrum access based cognitive radios. A 2-D IIR SBP filter is used in conjunction with a sub-Nyquist wideband signal reconstruction technique to achieve aperture-array directional spectrum sensing using sub-Nyquist sparse sampling based on the recently reported Eldar algorithm. The second application is related to wideband pulse and continuous-wave frequency modulated Doppler radar sensing. The SBP filter is integrated with a wideband radar back-end connected to an electronically-steerable aperture antenna. A a low-complexity directional localization algorithm is presented, which estimates the range and angle of a target scatterer with a signal to interference ratio improvement of 10 dB. We also present applications of 2-D IIR SBP in the fields of classification and remote sensing of unmanned aerial vehicles. Finally, a digital aperture-array wideband beamforming model using the 2-D IIR SBP filters is presented for radio telescope systems based on dense aperture arrays and time-domain beamforming. A well-known example is the study of pulsar astrophysics using a highly-directional aperture antenna system. The 2-D IIR SBP beamformer is simulated as the digital backend of the time-domain beamforming system with array signals synthesized using measured time-domain signatures from the Crab pulsar obtained from the GAVRT. The SBP filter shows a gain of 12.3 dB with an order of magnitude lower circuit complexity compared to traditional phased-array digital beamformers. To obtain comparable levels of SINR improvement, the wideband phased-array beamformers require 48-point FFTs per antenna. Assuming the optimum three real-multiplications per complex multiplication for the Gauss algorithm, it is discovered that the proposed 2-D IIR SBP beamformers are more than 97 % lower in digital multiplier complexity compared to traditional FIR phased-array FFT-beamformers.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agathoklis, P., & Bruton, L. T. (1983). Practical-BIBO stability of N-dimensional discrete systems. IEEE Proceedings of Electronic Circuits and Systems, 130(6), 236–242. doi:10.1049/ip-g-1:19830045.
Bruton, L., & Bartley, N. (1985). Three-dimensional image processing using the concept of network resonance. IEEE Transactions on Circuits and Systems, 32(7), 664–672. doi:10.1109/TCS.1985.1085773.
Chen, J., & Huo, X. (2006). Theoretical results on sparse representations of multiple-measurement vectors. IEEE Transactions on Signal Processing, 54(12), 4634–4643. doi:10.1109/TSP.2006.881263.
Cotter, S., Rao, B., Engan, K., & Kreutz-Delgado, K. (2005). Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Transactions on Signal Processing, 53(7), 2477–2488. doi:10.1109/TSP.2005.849172.
Dewdney, P. E., Hall, P. J., Schilizzi, R. T., & Lazio, T. J. L. W. (2009). The square kilometre array. Proceedings of the IEEE, 97(8), 1482–1496. doi:10.1109/JPROC.2009.2021005.
Gardner, W. A., Napolitano, A., & Paura, L. (2006). Cyclostationarity: Half a century of research. Signal Processing, 86(4), 639–697. doi:10.1016/j.sigpro.2005.06.016. URL http://www.sciencedirect.com/science/article/pii/S0165168405002409.
Gunaratne, T., & Bruton, L. (2008). Beamforming of broad-band bandpass plane waves using polyphase 2-D FIR trapezoidal filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(3), 838–850. doi:10.1109/TCSI.2008.916412.
Izzo, L., & Napolitano, A. (1996). Higher-order cyclostationarity properties of sampled time-series. Signal Processing, 54(3), 303–307. doi:10.1016/S0165-1684(96)00157-0. URL http://www.sciencedirect.com/science/article/pii/S0165168496001570.
Jones, G. E. (2010). Instrumentation for wide bandwidth radio astronomy. Ph.D. thesis, California Institute of Technology, 2009.
Joshi, R., Madanayake, A., Bruton, L., & Maini, M. (2011). Discrete-space continuous-time analog circuits for spatially-bandpass 2-D IIR beam filters. In 7th International workshop on multidimensional systems (pp. 1–7). doi:10.1109/nDS.2011.6076833.
Joshi, R., Madanayake, A., Adikari, J., & Bruton, L. (2012). Synthesis and array processor realization of a 2-D IIR beam filter for wireless applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(12), 2241–2254. doi:10.1109/TVLSI.2011.2174167.
Madanayake, A. (2008). Real-time FPGA architectures for space-time frequency-planar MDSP. Ph.D. thesis, University of Calgary.
Madanayake, A., & Bruton, L. T. (2010). Radio-frequency (RF) beamforming using systolic FPGA-based two dimensional (2-D) IIR space–time filters. VLSI InTech.
Madanayake, A., & Bruton, L. T. (2008). A speed-optimized systolic array processor architecture for spatio-temporal 2-D IIR broadband beam filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(7), 1953–1966. doi:10.1109/TCSI.2008.918214.
Madanayake, A., Wijenayake, C., Dansereau, D. G., Gunaratne, T. K., Bruton, L. T., & Williams, S. B. (2013). Multidimensional (MD) circuits and systems for emerging applications including cognitive radio, radio astronomy, robot vision and imaging. IEEE Circuits and Systems Magazine, 13(1), 10–43. doi:10.1109/MCAS.2012.2237141.
Madanayake, A., Wijenayake, C., Joshi, R., Almalkawi, M., Belostotski, L., Bruton, L., et al. (2014). Electronically scanned RF-to-bits beam aperture arrays using 2-D IIR spatially bandpass digital filters. Multidimensional Systems and Signal Processing, 25(2), 313–335. doi:10.1007/s11045-013-0250-7.
Mishali, M., & Eldar, Y. (2010). From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals. IEEE Journal of Selected Topics in Signal Processing, 4(2), 375–391. doi:10.1109/JSTSP.2010.2042414.
Mishali, M., & Eldar, Y. (2011). Wideband spectrum sensing at sub-Nyquist rates [applications corner]. Signal Processing Magazine, IEEE, 28(4), 102–135. doi:10.1109/MSP.2011.941094.
Sengupta, A., Madanayake, A., Gómez-García, R., & Engeberg, E. D. (2014). Wideband aperture array using RF channelizers and massively-parallel digital 2D IIR filterbank. In SPIE defense+ security, international society for optics and photonics (pp. 90,771G–90,771G).
Smale, D. A. (2011). Pulsars. High Energy Astrophysics Science Archive Research Center (HEASARC).
Stairs, I. H., et al. (2009). Gravitational science with pulsars and the square kilometre array. In 13th international symposium on ANTEM/URSI (pp. 1–2). doi:10.1109/ANTEMURSI.2009.4805115.
Stepp, L. M., & Roberto Gilmozzi H. J. H. (Ed.) (2010). DSS-28: a novel wide bandwidth radio telescope devoted to educational outreach, Vol. 7733, SPIE Proceedings.
Tkachenko, A., Cabric, D., & Brodersen, R. (2007). Cyclostationary feature detector experiments using reconfigurable BEE2. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, 2007. DySPAN 2007 (pp. 216–219). doi:10.1109/DYSPAN.2007.36.
Venkataramani, R., & Bresler, Y. (2000). Perfect reconstruction formulas and bounds on aliasing error in sub-Nyquist nonuniform sampling of multiband signals. IEEE Transactions on Information Theory, 46(6), 2173–2183. doi:10.1109/18.868487.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Madanayake, A., Randeny, T., Udayanga, N. et al. Applications of RF aperture-array spatially-bandpass 2-D IIR filters in sub-Nyquist spectrum sensing, wideband doppler radar and radio astronomy beamforming. Multidim Syst Sign Process 28, 1523–1548 (2017). https://doi.org/10.1007/s11045-016-0423-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-016-0423-2