[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A simple approach to estimate muscle forces and orthosis actuation in powered assisted walking of spinal cord-injured subjects

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Simulation of walking in individuals with incomplete spinal cord injuries (SCI) wearing an active orthosis is a challenging problem from both the analytical and the computational points of view, due to the redundant nature of the simultaneous actuation of the two systems. The objective of this work is to quantify the contributions of muscles and active orthosis to the net joint torques, so as to assist the design of active orthoses for SCI. The functional innervated muscles of SCI patients were modeled as Hill-type actuators, while the idle muscles were represented by elastic and dissipative elements. The orthosis was included as a set of external torques added to the ankles, knees, and hips to obtain net joint torque patterns similar to those of normal unassisted walking. The muscle-orthosis redundant actuator problem was solved through a physiological static optimization approach, for which several cost functions and various sets of innervated muscles were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Silva, P.C., Silva, M.T., Martins, J.M.: Evaluation of the contact forces developed in the lower limb/orthosis interface for comfort design. Multibody Syst. Dyn. 24, 367–388 (2010)

    Article  MATH  Google Scholar 

  2. Kao, P.C., Lewis, C.L., Ferris, D.P.: Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J. Biomech. 43, 203–209 (2010)

    Article  Google Scholar 

  3. Kao, P.C., Lewis, C.L., Ferris, D.P.: Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. J. Biomech. 43, 1401–1407 (2010)

    Article  Google Scholar 

  4. Lewis, C.L., Ferris, D.P.: Invariant hip moment pattern while walking with a robotic hip exoskeleton. J. Biomech. 44, 789–793 (2011)

    Article  Google Scholar 

  5. Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons. Wiley/Blackwell, New York (2008)

    Google Scholar 

  6. To, C.S., Kirsch, R.F., Kobetic, R., Triolo, R.J.: Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking. IEEE Trans. Neural Syst. Rehabil. Eng. 13(2), 227–235 (2005)

    Article  Google Scholar 

  7. Agrawal, S.K., Fattah, A.: Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion. IEEE Trans. Neural Syst. Rehabil. Eng. 12(2), 157–165 (2004)

    Article  Google Scholar 

  8. Vukobratovic, M., Ciric, V., Hristic, D.: Contribution to the study of active exoskeletons. In: Proceedings of the 5th IFAC Congress. Paris, France (1972)

    Google Scholar 

  9. Vukobratovic, M., Hristic, D., Stojiljkovic, Z.: Development of active anthropomorphic exoskeleton. Med. Biol. Eng. Comput. 12, 66–80 (1974)

    Google Scholar 

  10. Dollar, A.M., Herr, H.: Active orthoses for the lower-limbs: challenges and state of the art. In: Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 968–977. Noordwijk, The Netherlands (2007)

    Chapter  Google Scholar 

  11. Colombo, G., Jorg, M., Dietz, V.: Driven gait orthosis to do locomotor training of paraplegic patients. In: 22nd Annual International Conference of the IEEE-EMBS. Chicago, USA (2000)

    Google Scholar 

  12. Pratt, J., Krupp, B., Morse, C., Collins, S.: The roboKnee: an exoskeleton for enhancing strength and endurance during walking. In: IEEE Int. Conference on Robotics and Automation. New Orleans, USA (2004)

    Google Scholar 

  13. Kawamoto, H., Kanbe, S., Sankai, Y.: Power assist method for HAL-3 estimating operator’s intention based on motion information. In: Proceedings of 2003 IEEE Workshop on Robot and Human Interactive Communication, pp. 67–72. Millbrae, CA, IEEE, New York (2003)

    Chapter  Google Scholar 

  14. Kawamoto, H., Sankai, Y.: Power assist system HAL-3 for gait disorder person. In: ICCHP. Austria (2002)

    Google Scholar 

  15. Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 24–31 (2004)

    Article  Google Scholar 

  16. Yamaguchi, G.T., Zajac, F.E.: Restoring unassited natural gait to paraplegics via functional neuromuscular stimulation: a computer simulation study. IEEE Transactions on Biomedical Engineering 37(9) (1990)

  17. Zajac, F.: Muscle and tendon: properties, models, scaling and applications to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)

    Google Scholar 

  18. Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B, Biol. Sci. 126, 136–195 (1938)

    Article  Google Scholar 

  19. Ackermann, M., Schiehlen, W.: Dynamic analysis of human gait disorder and metabolical cost estimation. Arch. Appl. Mech. 75, 569–594 (2006)

    Article  MATH  Google Scholar 

  20. Ackermann, M.: Dynamics and energetics of walking with prostheses. Ph.D. thesis, University of Stuttgart, Stuttgart (2007)

  21. Rodrigo, S.E., Ambrósio, J.A.C., Silva, M.P.T., Penisi, O.H.: Analysis of human gait based on multibody formulations and optimization tools. Mech. Based Des. Struct. Mach. 36, 446–477 (2008)

    Article  Google Scholar 

  22. García, D., Schiehlen, W.: Simulation of human walking with one-sided gait. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics. 1st Joint International Conference on Multibody System Dynamics (1). Num. 1. Lapperanta, Finland (2010)

    Google Scholar 

  23. Winters, J.: Concepts in Neuromuscular Modeling, Three-dimensional Analysis of Human Movement. Human Kinetics Publishers, Champaign (1995)

    Google Scholar 

  24. Thomas, C.K., Grumbles, R.M.: Muscle atrophy after human spinal cord injury. Biocybern. Biomed. Eng. 25(3), 39–46 (2005)

    Google Scholar 

  25. McDonald, M.F., Garrison, M.K., Schmit, B.D.: Length–tension properties of ankle muscles in chronic human spinal cord injury. J. Biomech. 38, 2344–2353 (2005)

    Article  Google Scholar 

  26. Lebiedowska, M.K., Fisk, J.R.: Passive dynamics of the knee joint in healthy children and children affected by spastic paresis. Clin. Biomech. 14(9), 653–660 (1999)

    Article  Google Scholar 

  27. Edrich, T., Riener, R., Quintern, J.: Analysis of passive elastic joint moments in paraplegics. IEEE Trans. Biomed. Eng. 47, 1058–1065 (2000)

    Article  Google Scholar 

  28. Amankwah, K.R., Triolo, J., Kirsch, R.: Effects of spinal cord injury on lower-limb passive joint moments revealed through a nonlinear viscoelastic model. J. Rehabil. Res. Dev. 41, 15–32 (2004)

    Article  Google Scholar 

  29. Nigg, B.M., Herzog, W. (eds.): Biomechanics of the Musculo-Skeletal System, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  30. Crowninshield, R., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14, 793–801 (1981)

    Article  Google Scholar 

  31. Yamaguchi, G.T., Moran, D.W., Si, J.: A computationally efficient method for solving the redundant problem in biomechanics. J. Biomech. 28, 999–1005 (1995)

    Article  Google Scholar 

  32. Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34, 153–161 (2001)

    Article  Google Scholar 

  33. Rengifo, C., Aoustin, Y., Plestan, F., Chevallereu, C.: Distribution of forces between synergistics and antogonistics muscles using an optimization criterion depending on muscle contraction behaviour. J. Biomech. Eng. 132, 1–11 (2010)

    Article  Google Scholar 

  34. Anderson, F.C., Pandy, M.G.: Dynamic optimization of human walking. J. Biomech. Eng. 123, 381–390 (2001)

    Article  Google Scholar 

  35. Menegaldo, L.L., Fleury, A.T., Weber, H.I.: A ‘cheap’ optimal control approach to estimate muscles forces in musculoskeletal systems. J. Biomech. 39, 1787–1795 (2006)

    Article  Google Scholar 

  36. Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39, 321–328 (2006)

    Article  Google Scholar 

  37. Pipeleers, G., Demeulenaere, B., Jonkers, I., Spaepen, P., Van der Perre, G., Spaepen, A., Swevers, J., De Schutter, J.: Dynamic simulation of human motion: numerically efficient inclusion of muscle physiology by convex optimization. Optimization. Engineering 9, 213–238 (2008)

    MATH  Google Scholar 

  38. Winter, D.A.: Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd edn. University of Waterloo Press, Waterloo (1991)

    Google Scholar 

  39. Ambrosio, J., Kecskemethy, A.: Multibody dynamics of biomechanical models for human motion via optimization. In: Garcia Orden, J.C., Goicolea, J.M., Cuadrado, J. (eds.), Multibody Dynamics Computational Methods and Applications. Springer, Berlin (2007)

    Google Scholar 

  40. Tsirakos, D., Baltzopoulos, V., Barlett, R.: Inverse optimization: functional and physiological considerations related to the force-sharing problem. Crit. Rev. Biomed. Eng. 25, 371–407 (1997)

    Google Scholar 

  41. Hatze, H.: Neuromusculoskeletal control systems modeling: a critical survey of recent developments. IEEE Trans. Autom. Control 25, 375–385 (1980)

    Article  MATH  Google Scholar 

  42. Ralston, H.J.: Energetics of Human Walking, Neural Control of Locomotion. Plenum, New York (1976)

    Google Scholar 

  43. Hatze, H.: The fundamental problem of myoskeletal inverse dynamics and its implications. J. Biomech. 35, 109–115 (2002)

    Article  Google Scholar 

  44. Au, S., Berniker, M., Herr, H.: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 21(4), 654–666 (2008)

    Article  Google Scholar 

  45. Cullell, A., Moreno, J.C., Rocon, E., Forner-Cordero, A., Pons, J.L.: Biologically based design of an actuator system for a knee-ankle-foot orthosis.. Mech. Mach. Theory 44, 860–872 (2009)

    Article  MATH  Google Scholar 

  46. Kao, P.-C., Ferris, D.P.: Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait Posture 29(2), 230–236 (2009)

    Article  Google Scholar 

  47. Cain, S.M., Gordon, K.E., Ferris, D.P.: Locomotor adaptation to a powered ankle-foot orthosis depends on control method. J. NeuroEng. Rehabil. 4, 48 (2007)

    Article  Google Scholar 

  48. Ferris, D.P., Bohra, Z.A., Lukos, J.R., Kinnaird, C.R.: Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis. J. Appl. Physiol. 100(1), 163–170 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Spanish Ministry of Science and Innovation under the project DPI2009-13438-C03. The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, J., Romero, F., Pàmies-Vilà, R. et al. A simple approach to estimate muscle forces and orthosis actuation in powered assisted walking of spinal cord-injured subjects. Multibody Syst Dyn 28, 109–124 (2012). https://doi.org/10.1007/s11044-011-9284-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9284-5

Keywords

Navigation