[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The miR-429 suppresses proliferation and migration in glioblastoma cells and induces cell-cycle arrest and apoptosis via modulating several target genes of ERBB signaling pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

Glioblastoma multiforme (GBM) is an aggressive and lethal brain cancer, which is incurable with standard cancer treatments. miRNAs have great potential to be used for gene therapy due to their ability to modulate several target genes simultaneously. We found miR-429 is downregulated in GBM and has several predicted target genes from the ERBB signaling pathway using bioinformatics tools. ERBB is the most over-activated genetic pathway in GBM patients, which is responsible for augmented cell proliferation and migration in GBM.

Methods and results

Here, miR-429 was overexpressed using lentiviral vectors in U-251 and U-87 GBM cells and it was observed that the expression level of several oncogenes of the ERBB pathway, EGFR, PIK3CA, PIK3CB, KRAS, and MYC significantly decreased, as shown by real-time PCR and western blotting. Using the luciferase assay, we showed that miR-429 directly targets MYC, BCL2, and EGFR. In comparison to scrambled control, miR-429 had a significant inhibitory effect on cell proliferation and migration as deduced from MTT and scratch wound assays and induced cell-cycle arrest and apoptosis in flow cytometry.

Conclusions

Altogether, miR-429 seems to be an efficient suppressor of the ERBB genetic signaling pathway and a potential therapeutic for GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncology 21:v1–v100

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis D (2006) Molecular pathology of malignant gliomas. Ann Rev Pathol Mech Dis 1:97–117

    Article  CAS  Google Scholar 

  3. Schwartzbaum J, Fisher J, Aldape K, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2:494–503

    Article  PubMed  Google Scholar 

  4. Séhédic D, Cikankowitz A, Hindré F, Davodeau F, Garcion E (2015) Feature review nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. Trends Pharmacol Sci 36:236–252

    Article  PubMed  Google Scholar 

  5. Kim S, Harford J, Pirollo K, Chang E (2015) Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: the promise of nanomedicine. Biochem Biophys Res Commun 468:485–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alifieris C, Trafalis D (2015) Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther 152:63–82

    Article  CAS  PubMed  Google Scholar 

  7. Urbanska K, Sokołowska J, Szmidt M, Sysa P (2014) Glioblastoma multiforme an overview. Contemp Oncol 18:307–312

    Google Scholar 

  8. Adamson C, Kanu O, Mehta A, Di C, Lin N, Mattox A et al (2009) Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 18:1061–1083

    Article  CAS  PubMed  Google Scholar 

  9. Anjuma K, Shagufta B, Abbas S, Patel S, Khan I, Ali Shah S et al (2017) Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: a review. Biomed Pharmacother 92:681–689

    Article  Google Scholar 

  10. Kane J, Miska J, Young J, Kanojia D, Kim J, Lesniak M (2015) Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro Oncology 17(Suppl 2):ii24–ii36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  12. Lindow M, Kauppinen S (2012) Discovering the first microRNA-targeted drug. J Cell Biol 199:407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chakraborty C, Sharma A, Sharma G, Priya Doss C, Lee S (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Neucleic Acids 8:132–143

    Article  CAS  Google Scholar 

  14. Yang G, Yin B (2014) The advance of application for microRNAs in cancer gene therapy. Biomed Pharmacother 68:137–142

    Article  CAS  PubMed  Google Scholar 

  15. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  16. Calin G, Sevignani C, Dumitru C, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ciafrè S, Galardi S, Mangiola A, Ferracin M, Liu C, Sabatino G et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 335:1351–1358

    Article  Google Scholar 

  18. Novakova J, Slabya O, Vyzula R, Michalek J (2009) MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun 386:1–5

    Article  CAS  PubMed  Google Scholar 

  19. Hua D, Mo F, Ding D, Li L, Han X, Zhao N et al (2012) A Catalogue of glioblastoma and brain microRNAs identified by deep sequencing. Omics 16:690–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berthois Y, Delfino C, Metellus P, Fina F, Nanni-Metellus I, Al Aswy H et al (2014) Differential expression of miR200a-3p and miR21 in grade II–III and grade IV gliomas. Cancer Biol Ther 15:938–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghaemi S, Arefian E, Rezazadeh Valojerdi R, Soleimani M, Moradi Motlagh A, Jamshidi Adegani F (2020) Inhibiting the expression of anti-apoptotic genes BCL2L1 and MCL1, and apoptosis induction in glioblastoma cells by microRNA-342. Biomed Pharmacother 121:109641

    Article  CAS  PubMed  Google Scholar 

  22. Moradi Motlagh A, Arefian E, Rezazadeh Valojerdi R, Ghaemi S, Jamshidi Adegani F, Soleimani M (2020) MicroRNA-129 inhibits glioma cell growth by targeting CDK4, CDK6, and MDM2. Mol Ther 19:759–64

    CAS  Google Scholar 

  23. Allahverdi A, Arefian E, Soleimani M, Ai J, Nahanmoghaddam N, Yousefi-Ahmadipour A, Ebrahimi-Barough S (2020) MicroRNA-4731-5p delivered by AD-mesenchymal stem cells induces cell cycle arrest and apoptosis in glioblastoma. J Cell Physiol 235(11):8167–75

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Ma M, Dong L, Wang F, Lx C, Li X (2011) MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme. Cancer Biol Ther 12:477–83

    Article  CAS  PubMed  Google Scholar 

  25. Cai X, Sughrue ME (2018) Glioblastoma new therapeutic strategies to address cellular and genomic complexity. Oncotarget 9:9540–9554

    Article  PubMed  Google Scholar 

  26. Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom D, Zairis S et al (2016) Clonal evolution of glioblastoma under therapy. Nat Genet 48:768–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miranda A, Blanco-Prieto M, Sousaa J, Pais A, Vitorinoa C (2017) Breaching barriers in glioblastoma. Part I: molecular pathways and novel treatment approaches. Int J Pharm 531:372–88

    Article  CAS  PubMed  Google Scholar 

  28. Brennan C, Verhaak R, McKenna A, Campos B, Noushmehr H, Salama S et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hynes N, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21:177–184

    Article  CAS  PubMed  Google Scholar 

  30. Kalhori M, Arefian E, Fallah Atanaki F, Kavousi K, Soleimani M (2020) miR-548x and miR-4698 controlled cell proliferation by affecting the PI3K/AKT signaling pathway in Glioblastoma cell lines. Sci Rep 10:1–12

    Article  Google Scholar 

  31. Kalhori M, Irani S, Soleimani M, Arefian E, Kouhkan F (2019) The effect of miR-579 on the PI3K/AKT pathway in human glioblastoma PTEN mutant cell lines. J Cell Biochem 120:16760–16774

    Article  CAS  PubMed  Google Scholar 

  32. Qiu M, Liang Z, Chen L, Tan G, Wang K, Liu L et al (2015) MicroRNA-429 suppresses cell proliferation, epithelial-mesenchymal transition, and metastasis by direct targeting of BMI1 and E2F3 in renal cell carcinoma. Urol Oncol 332:e9–e18

    Google Scholar 

  33. Li D, Wang H, Song H, Xu H, Zhao B, Wu C et al (2017) The microRNAs miR-200b-3p and miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and motility of breast cancer cells. Oncotarget 8:85276

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang M, Dong B-B, Lu M, Zheng M-J, Chen H, Ding J-Z et al (2016) miR-429 functions as a tumor suppressor by targeting FSCN1 in gastric cancer cells. OncoTargets Ther 9:1123

    CAS  Google Scholar 

  35. Chen W, Zhang B, Guo W, Gao L, Shi L, Li H et al (2015) miR-429 inhibits glioma invasion through BMK1 suppression. J Neurooncol 125:43–54

    Article  CAS  PubMed  Google Scholar 

  36. Dong H, Hao X, Cui B, Guo M (2017) MiR-429 suppresses glioblastoma multiforme by targeting SOX2. Cell Biochem Funct 35:260–268

    Article  CAS  PubMed  Google Scholar 

  37. Ouyang Y, Gao P, Zhu B, Chen X, Lin F, Wang X et al (2015) Downregulation of microRNA-429 inhibits cell proliferation by targeting p27Kip1 in human prostate cancer cells. Mol Med Rep 11:1435–1441

    Article  CAS  PubMed  Google Scholar 

  38. Lang Y, Xu S, Ma J, Wu J, Jin S, Cao S et al (2014) MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes. Biochem Biophys Res Commun 450:154–159

    Article  CAS  PubMed  Google Scholar 

  39. Guo C, Liu S, Sun M (2020) miR-429 as biomarker for diagnosis, treatment and prognosis of cancers and its potential action mechanisms: a systematic literature review. Neoplasma 67:215–228

    Article  CAS  PubMed  Google Scholar 

  40. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk - database: prediction of possible miRNA binding sites by “walking” the genes of 3 genomes. J Biomed Inform 44:839–847

    Article  CAS  PubMed  Google Scholar 

  41. Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 2015; 12:697–

  42. Edgar R, Domrachev M, Lash A (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barrett T, Wilhite S, Ledoux P, Evangelista C, Kim I, Tomashevsky M et al (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991–D995

    Article  CAS  PubMed  Google Scholar 

  44. Agarwal V, Bell G, Nam J, Bartel D (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e5005

    Article  Google Scholar 

  45. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595

    Article  CAS  PubMed  Google Scholar 

  47. Kanehisa M (2019) Toward understanding the origin and evolution of cellular organisms. Protein Sci 28:1947–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Papatheodorou I, Fonseca N, Keays M, Tang Y, Barrera E, Bazant W, Petryszak R et al (2017) Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res 46:D246–D251

    Article  PubMed Central  Google Scholar 

  49. Petryszak R, Fonseca N, Füllgrabe A, Huerta L, Keays M, Tang Y et al (2017) The RNASeq-er API—a gateway to systematically updated analysis of public RNA-seq data. Bioinformatics 33:2218–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fonseca N, Marioni J, Brazma A (2014) RNA-Seq gene profiling—a systematic empirical comparison. PLoS ONE 9:e107026

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

    Article  CAS  PubMed  Google Scholar 

  52. Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32:D109–D111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Naderi M, Abdul Tehrani H, Soleimani M, Shabani I, Hashemi S. A Home-brew Real-time PCR Assay for Reliable Detection and Quantification of Mature miR-122. Appl Immunohistochem Mol Morphol 2015; 23.

  54. Calin G, Dumitru C, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hydbring P, Badalian-Very G (2013) Clinical applications of microRNAs. F1000Res 2:136

    Article  PubMed  PubMed Central  Google Scholar 

  56. Torsvik A, Stieber D, Enger P, Golebiewska A, Molven A, Svendsen A et al (2014) U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med 3:812–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Patil V, Pal J, Somasundaram K (2015) Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget 6:43452–43471

    Article  PubMed  PubMed Central  Google Scholar 

  58. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis MG et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–8

    Article  CAS  Google Scholar 

  59. Zhang C, Chang C, Gao H, Wang Q, Zhang F, Xu C (2018) MiR-429 regulates rat liver regeneration and hepatocyte proliferation by targeting JUN/MYC/BCL2/CCND1 signaling pathway. Cell Signal 50:80–89

    Article  CAS  PubMed  Google Scholar 

  60. Wang H, Wang W, Zhuang H, Xu M (2018) MiR-429 regulates the proliferation and apoptosis of nephroblastoma cells through targeting c-myc. Eur Rev Med Pharmacol Sci 22:5172–5179

    PubMed  Google Scholar 

  61. Sun T, Wang C, Xing J, Wu D (2011) miR-429 modulates the expression of c-myc in human gastric carcinoma cells. Eur J Cancer 47:2552–2559

    Article  CAS  PubMed  Google Scholar 

  62. Zhu P, Zhang J, Zhu J, Shi J, Zhu Q, Gao Y (2015) MiR-429 induces gastric carcinoma cell apoptosis through Bcl-2. Cell Physiol Biochem 37:1572–1580

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, Li M, Zang W, Ma Y, Wang N, Li P et al (2013) MiR-429 up-regulation induces apoptosis and suppresses invasion by targeting Bcl-2 and SP-1 in esophageal carcinoma. Cell Oncol (Dordr) 36:385–394

    Article  CAS  PubMed  Google Scholar 

  64. Messaoudi K, Clavreul A, Lagarce F (2015) Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov Today 20:899–905

    Article  CAS  PubMed  Google Scholar 

  65. Feng H, Hu B, Vuori K, Sarkaria J, Furnari F, Cavenee W et al (2014) EGFRvIII stimulates glioma growth and invasion through PKA-dependent serine phosphorylation of Dock180. Oncogene 33:2504–2512

    Article  CAS  PubMed  Google Scholar 

  66. Holmen S, Williams B (2005) Essential role for Ras signaling in glioblastoma maintenance. Cancer Res 65:8250–8255

    Article  CAS  PubMed  Google Scholar 

  67. Xu P, Zhang G, Hou S, Sha L (2018) MAPK8 mediates resistance to temozolomide and apoptosis of glioblastoma cells through MAPK signaling pathway. Biomed Pharmacother 106:1419–1427

    Article  CAS  PubMed  Google Scholar 

  68. Gheidari F, Arefian E, Jamshidi-Adeghani F, Soleimani M (2016) Differentiation induction effect of Mir-429 over-expression in U251 glioma cell line. Int Clin Neurosci J 3:201–205

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Institute for Medical Research Development (NIMAD) for the financial support of this work (Grant No. 942974). The authors would also like to acknowledge Dr. Fatemeh Jamshidi Adegani for her mentorship role in this project and Dr. Marie Shamseddin for native English review.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized by EA and MS. The methodology was given by EA, FG, and FS. Formal analysis and investigation were done by FG and EA. Writing and original draft preparation was done by FG and EA. Writing, review, and editing were done by ES, MK and LTT. Funding acquisition was provided by MS and EA. FG and FS performed experiments.

Corresponding authors

Correspondence to Ehsan Arefian or Masoud Soleimani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3950 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheidari, F., Arefian, E., Saadatpour, F. et al. The miR-429 suppresses proliferation and migration in glioblastoma cells and induces cell-cycle arrest and apoptosis via modulating several target genes of ERBB signaling pathway. Mol Biol Rep 49, 11855–11866 (2022). https://doi.org/10.1007/s11033-022-07903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07903-2

Keywords

Navigation