[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Meta-QTL analysis and candidate genes identification for various abiotic stresses in maize (Zea mays L.) and their implications in breeding programs

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Global climate change leads to the concurrence of a number of abiotic stresses including moisture stress (drought, waterlogging), temperature stress (heat, cold), and salinity stress, which are the major factors affecting maize production. To develop abiotic stress tolerance in maize, many quantitative trait loci (QTL) have been identified, but very few of them have been utilized successfully in breeding programs. In this context, the meta-QTL analysis of the reported QTL will enable the identification of stable/real QTL which will pave a reliable way to introgress these QTL into elite cultivars through marker-assisted selection. In this study, a total of 542 QTL were summarized from 33 published studies for tolerance to different abiotic stresses in maize to conduct meta-QTL analysis using BiomercatorV4.2.3. Among those, only 244 major QTL with more than 10% phenotypic variance were preferably utilised to carry out meta-QTL analysis. In total, 32 meta-QTL possessing 1907 candidate genes were detected for different abiotic stresses over diverse genetic and environmental backgrounds. The MQTL2.1, 5.1, 5.2, 5.6, 7.1, 9.1, and 9.2 control different stress-related traits for combined abiotic stress tolerance. The candidate genes for important transcription factor families such as ERF, MYB, bZIP, bHLH, NAC, LRR, ZF, MAPK, HSP, peroxidase, and WRKY have been detected for different stress tolerances. The identified meta-QTL are valuable for future climate-resilient maize breeding programs and functional validation of candidate genes studies, which will help to deepen our understanding of the complexity of these abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in supplementary files (Table S1, S2, and S3).

References

  • Acuña-Galindo MA, Mason RE, Subramanian NK, Hays DB (2015) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55(2):477–492

    Article  Google Scholar 

  • Agrama HA, Moussa ME (1996) Mapping QTLsQTL in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91(1):89–97

    Article  CAS  Google Scholar 

  • Alam MM, Sharmin S, Nabi Z, Mondal SI, Islam MS, Bin Nayeem S, Shoyaib M, Khan H (2010) A putative leucine-rich repeat receptor-like kinase of jute involved in stress response. Plant Mol Bio Report 28(3):394–402. https://doi.org/10.1007/s11105-009-0166-4

    Article  CAS  Google Scholar 

  • Araus JL, Serret MD, Edmeades G (2012) Phenotyping maize for adaptation to drought. Front Physio 3:305

    Article  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A et al (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20(14):2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Pande A, Saxena SC, Thapliyal M, Guru K, Kumar A (2018) Role of AP2/EREBP transcription factor family in environmental stress tolerance. Cell and Cell Lif Sci J 3:000120

    Google Scholar 

  • Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44:147–153

    Article  CAS  Google Scholar 

  • Beavis WD, Smith OS, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34(4):882–896

    Article  Google Scholar 

  • Bianchi VJ, Rubio M, Trainotti L, Verde I, Bonghi C, Martínez-Gómez P (2015) Prunus transcription factors: breeding perspectives. Front Plant Sci 6:443. https://doi.org/10.3389/fpls.2015.00443

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohra A, Chand Jha U, Godwin ID, Kumar Varshney R (2020) Genomic interventions for sustainable agriculture. Plant Biotech J 18(12):2388–2405

    Article  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55(407):2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Cantarero MG, Cirilo AG, Andrade FH (1999) Night temperature at silking affects set in maize. Crop Sci 39(3):703–710

    Article  Google Scholar 

  • Chardon F, Jasinski S, Durandet M, Le’cureuil A, Soulay F, Bedu M, Guerche P, Masclaux-Daubresse C (2014) QTL meta-analysis in Arabidopsis reveals an interaction between leaf senescence and resource allocation to seeds. J Exp Bot 65(14):3949–3962

    Article  PubMed  PubMed Central  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168(4):2169–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Chopra R, Hayes C, Morris G, Marla S, Burke J, Xin Z, Burow G (2017) Genome-wide association study of developing leaves’ heat tolerance during vegetative growth stages in a sorghum association panel. Plant Genome 10(2):2016–2109. https://doi.org/10.3835/plantgenome2016.09.0091

    Article  CAS  Google Scholar 

  • Chen J, Xu W, Velten J, Xin Z, Stout J (2012) Characterization of maize inbred lines for drought and heat tolerance. J Soil Water Conserv 67(5):354–364. https://doi.org/10.2489/jswc.67.5.354

    Article  Google Scholar 

  • Choudhary A, Pandey P, Senthil-Kumar M (2016) Tailored responses to simultaneous drought stress and pathogen infection in plants. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran L-SP (eds) Drought stress tolerance in plants (vol. 1). Springer, Cham, p 427–438

  • Collard BC, Jahufer MZ, Brouwer JB, Pang EC (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1):169–196

    Article  CAS  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F et al (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128

    Article  Google Scholar 

  • Cui D, Wu D, Somarathna Y, Xu C, Li S, Li P, Zhang H, Chen H, Zhao L (2015) QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.). Euphytica 203(2):273–83

    Article  CAS  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Dell’Acqua M, Gatti DM, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing AL, Aung HH, Nelissen H, Baute J, Frascaroli E (2015) Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Bio 16(1):1–23

    CAS  Google Scholar 

  • Du H, Huang M, Zhang Z, Cheng S (2014) Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response. Euphytica 198(1):115–126

    Article  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Edreira JR, Otegui ME (2013) Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crops Res 142:58–67

    Article  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich E (2000) The WRKY superfamily of plant transcription factor. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Farfan ID, De La Fuente GN, Murray SC, Isakeit T, Huang PC, Warburton M, Williams P, Windham GL, Kolomiets M (2015) Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics. PLoS One 10(2):e0117737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A Review Agron Sustain Dev 35(2):461–481

    Article  CAS  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56(2):241–253

    Article  CAS  PubMed  Google Scholar 

  • Fracheboud Y, Ribaut JM, Vargas M, Messmer R, Stamp P (2002) Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 53(376):1967–77

    Article  CAS  PubMed  Google Scholar 

  • Frey FP, Presterl T, Lecoq P, Orlik A, Stich B (2016) First steps to understand heat tolerance of temperate maize at adult stage: identification of QTL across multiple environments with connected segregating populations. Theor Appl Genet 129(5):945–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu FL, Feng ZL, Gao SB, Zhou SF, Li WC (2008) Evaluation and quantitative inheritance of several drought-relative traits in maize. Agric Sci China 7(3):280–290

    Article  Google Scholar 

  • Gadag RN, Bhat JS, Mukri G, Chikkappa GK, Kumar R, Yadav S, Yadava P, Nithyashree ML, Gopalakrishna KN, Sheoran S, Yadav SK (2021) Resistance to abiotic stress: theory and applications in maize breeding. In: Kole C (ed) genomic designing for abiotic stress resistant cereal crops. Springer Nature, Cham, pp 105–151. https://doi.org/10.1007/978-3-030-75875-2_3

    Chapter  Google Scholar 

  • Gao G, Hu J, Zhang X, Zhang F, Li M, Wu X (2021) Transcriptome analysis reveals genes expression pattern of seed response to heat stress in Brassica napus L. Oil Crop Sci 6(2):87–96

    Article  Google Scholar 

  • Giaveno CD, Ribeiro RV, Souza GM, de Oliveira RF (2007) Screening of tropical maize for salt stress tolerance. Crop Breed Appl Biotechnol 7(3):304–313

    Article  CAS  Google Scholar 

  • Gibbs DJ, Conde JV, Berckhan S, Prasad G, Mendiondo GM, Holdsworth MJ (2015) Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol 169(1):23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155(1):463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong F, Yang L, Tai F, Hu X, Wang W (2014) “Omics” of maize stress response for sustainable food production: opportunities and challenges. OMICS 18:714–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Jiang Q, Hu Z, Sun X, Fan S, Zhang H (2018) Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop J 6(2):181–190

    Article  Google Scholar 

  • Hao ZF, Li XH, Xie CX, Li MS, Zhang DG, Bai L, Zhang SH (2008) Two consensus quantitative trait loci clusters controlling anthesis–silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann Appl Biol 153(1):73–83

    Article  Google Scholar 

  • Hoeren FU, Dolferus R, Wu YR, Peacock WJ, Dennis ES (1998) Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149:479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holá D, Langrová K, Kočová M, Rothová O (2003) Photosynthetic parameters of maize (Zea mays L.) inbred lines and F 1 hybrids: their different response to, and recovery from rapid or gradual onset of low-temperature stress. Photosynthetica 41(3):429–42

    Article  Google Scholar 

  • Hoopes GM, Hamilton JP, Wood JC, Esteban E, Pasha A, Vaillancourt B, Provart NJ, Buell CR (2019) An updated gene atlas for maize reveals organ-specific and stress-induced genes. Plant J 97(6):1154–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu S, Lübberstedt T, Zhao G, Lee M (2016) QTL mapping of low-temperature germination ability in the maize IBM Syn4 RIL population. PLoS One 11(3):e0152795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P et al (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987. https://doi.org/10.1007/s11033-011-0823-1

    Article  CAS  PubMed  Google Scholar 

  • Huo D, Ning Q, Shen X, Liu L, Zhang Z (2016) QTL mapping for kernel number-related traits and validation of one major QTL for ear length in maize. PLoS One 11:e0155506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein MM, Balbaa LK, Gaballah MS (2007) Salicylic acid and salinity effects on growth of maize plants. Res J Agri Bio Sci 3(4):321–328

    CAS  Google Scholar 

  • IPCC (2014) Summary for policymakers, in Climate Change 2014: impacts, adaptation, and vulnerability. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE et al (eds) Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, NY, pp 1–32

    Google Scholar 

  • Islam MS, Ontoy J, Subudhi PK (2019) Meta-analysis of quantitative trait loci associated with seedling-stage salt tolerance in rice (Oryza sativa L.). Plants 8:33

    Article  CAS  PubMed Central  Google Scholar 

  • Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161(3):1202–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Li M, Li W, Liu L, Jian Y, Yang Z, Shen X, Ning Q, Du Y, Zhao R, Jackson D, Yang X, Zhang Z (2020) A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun 11(1):988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jodage K, Kuchanur PH, Zaidi PH, Patil A, Seetharam K, Vinayan MT, Arunkumar B (2017) Genetic analysis of heat stress tolerance and association of traits in tropical maize (Zea mays L.). Environ Ecol 35:2354–2360

    Google Scholar 

  • Jompuk C, Fracheboud Y, Stamp P, Leipner J (2005) Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J Exp Bot 56(414):1153–63

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Sveenivasan G (1988) The heat shock response of Neurosporacrassa: stress-induced thermotolerance in relation to peroxidase and superoxide dismutase levels. Biochem Biophys Res Communic 156(3):1097–1102. https://doi.org/10.1016/S0006-291X(88)80745-9

    Article  CAS  Google Scholar 

  • Kaur S, Rakshit S, Choudhary M, Das AK, Kumar RR (2021) Meta-analysis of QTLsQTL associated with popping traits in maize (Zea mays L.). PloS one 16(8):e0256389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keppler BD, Showalter AM (2010) IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis. Mol Plant 3(5):834–841. https://doi.org/10.1093/mp/ssq028

    Article  CAS  PubMed  Google Scholar 

  • Khahani B, Tavakol E, Shariati V, Rossini L (2021) Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield, yield-related traits and root architecture under water deficit conditions. Sci Rep 11(1):1–8

    Article  CAS  Google Scholar 

  • Khan AA, Rao SA, McNeilly T (2003) Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica 131(1):81–9

    Article  CAS  Google Scholar 

  • Khowaja FS, Norton GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genom 10:276

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593

    Article  CAS  PubMed  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Kumar P, Choudhary M, Jat BS, Kumar B, Singh V, Kumar V, Singla D, Rakshit S (2021) Skim sequencing: an advanced NGS technology for crop improvement. J Genet 100(2):1–10

    Article  Google Scholar 

  • Kwon T, Sparks JA, Nakashima J, Allen SN, Tang Y, Blancaflor EB (2015) Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development. Am J Bot 102(1):21–35

    Article  CAS  PubMed  Google Scholar 

  • Lebreton C, Lazić-Jančić V, Steed A, Pekić S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46(7):853–865

    Article  CAS  Google Scholar 

  • Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W (2011) Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci 180:672–678

    Article  CAS  PubMed  Google Scholar 

  • Li C, Ng CK, Fan LM (2015) MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot 114:80–91

    Article  CAS  Google Scholar 

  • Li H, Li D, Chen A, Tang H, Li J, Huang S (2017) RNA-seq for comparative transcript profiling of kenaf under salinity stress. J Plant Res 130(2):365–372

    Article  CAS  PubMed  Google Scholar 

  • Li P, Ponnala L, Gandotra N et al (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Li XH, Li JZ, Fu JF, Wang YZ, Wei MG (2009) Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize. Euphytica 169:273–284

    Article  Google Scholar 

  • Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62(2):302–315

    Article  CAS  PubMed  Google Scholar 

  • Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013) The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64(10):2899–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Wang L, Zhai H, Song X, He S, Liu Q (2014) A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato. PloS One 9(12):e115128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zenda T, Wang X, Liu G, Jin H, Yang Y, Dong A, Duan H (2019) Comprehensive meta-analysis of maize QTLsQTL associated with grain yield, flowering date and plant height under drought conditions. J Agric Sci 11:1–9

    Google Scholar 

  • Liu Y, Subhash C, Yan J, Song C, Zhao J, Li J (2011) Maize leaf temperature responses to drought: thermal imaging and quantitative trait loci (QTL) mapping. Env Exp Bot 71(2):158–165

    Article  Google Scholar 

  • Liu YZ, Tang B, Zheng YL, Ma KJ, Xu SZ, Qiu FZ (2010) Screening methods for waterlogging tolerance at Maize (Zea mays L.) seedling stage. Agric Sci China 9(3):362–369

    Article  Google Scholar 

  • Liu Z, Kumari S, Zhang L, Zheng Y, Ware D (2012) Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PloS One 7(6):e39786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lizaso JI, Ruiz-Ramos M, Rodríguez L, Gabaldon-Leal C, Oliveira JA, Lorite IJ, Sánchez D, García E, Rodríguez A (2018) Impact of high temperatures in maize: phenology and yield components. Field Crops Res 216:129–140

    Article  Google Scholar 

  • Lu GH, Tang JH, Yan JB, Ma XQ, Li JS, Chen SJ, Ma JC, Liu ZX, E LZ, Zhang YR, Dai JR (2006) Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol 48(10):1233–43

    Article  CAS  Google Scholar 

  • Lu T, Yang Y, Yao B, Liu S, Zhou Y, Zhang C (2012) Template-based structure prediction and classification of transcription factors in Arabidopsis thaliana. Protein Sci 21(6):828–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci U S A 107(45):19585–19590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan J, Dong J, Song X, Jiang J, Li H (2020) Overexpression of tamarix hispida ThTrx5 confers salt tolerance to Arabidopsis by activating stress response signals. Int J Mol Sci 21(3):1165

    Article  CAS  PubMed Central  Google Scholar 

  • Luo M, Zhang Y, Chen K, Kong M, Song W, Lu B, Shi Y, Zhao Y, Zhao J (2019) Mapping of quantitative trait loci for seedling salt tolerance in maize. Mol Breed 39(5):39–64

  • Luo M, Zhao Y, Zhang R, Xing J, Duan M, Li J, Wang N, Wang W, Zhang S, Chen Z, Zhang H (2017) Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biol 17(1):1–10

  • Luo X, Bai X, Zhu D, Li Y, Ji W, Cai H, Wu J, Liu B, Zhu Y (2012) GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta 235(6):1141–1155

    Article  CAS  PubMed  Google Scholar 

  • Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1004915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142:33–42

    Article  Google Scholar 

  • McNellie JP, Chen J, Li X, Yu J (2018) Genetic mapping of foliar and tassel heat stress tolerance in maize. Crop Sci 58(6):2484–2493

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Nikolić A, Anđelković V, Dodig D, Mladenović-Drinić S, Kravić N, Ignjatović-Micić D (2013) Identification of QTL-s for drought tolerance in maize, II: yield and yield components. Genetika 45(2):341–350

    Article  Google Scholar 

  • Opassiri R, Pomthong B, Onkoksoong T, Akiyama T, Esen A, Cairns JRK (2006) Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. BMC Plant Biol 6(1):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opitz N, Paschold A, Marcon C, Malik WA, Lanz C, Piepho HP, Hochholdinger F (2014) Transcriptomic complexity in young maize primary roots in response to low water potentials. BMC Genom 15:741

    Article  CAS  Google Scholar 

  • Osman KA, Tang B, Wang Y, Chen J, Yu F, Li L, Han X, Zhang Z, Yan J, Zheng Y, Yue B (2013) Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PloS One 8(11):e79305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palta JP, Whitaker BD, Weiss LS (1993) Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of solanum species. Plant Physiol 103(3):793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit M, Sah RP, Chakraborty M, Prasad K, Chakraborty MK, Tudu V, Narayan SC, Kumar A, Manjunatha N, Kumar A, Rana M (2018) Gene action and combining ability for dual purpose traits in maize (Zea mays L.) under water deficit stress prevailing in eastern India. Range Manag Agrofor 39(1):29–37

    Google Scholar 

  • Perruc E, Charpenteau M, Ramirez BC, Jauneau A, Galaud JP, Ranjeva R, Ranty B (2004) A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J 38(3):410–420. https://doi.org/10.1111/j.1365-313X.2004.02062.x

    Article  CAS  PubMed  Google Scholar 

  • Prakash NR, Sheoran S, Saini M, Punia M, Rathod NK, Bhinda MS, Vinesh B, Choudhary MK, Sarkar B (2020) Offsetting climate change impact through genetic enhancement. In: Srinivasarao Ch et al (eds) Climate change and Indian agriculture: challenges and adaptation strategies. ICAR-National Academy of Agricultural Research Management, Hyderabad, Telangana, India, p 71–104

  • Prasanna BM, Cairns JE, Zaidi PH, Beyene Y, Makumbi D, Gowda M, Magorokosho C, Zaman-Allah M, Olsen M, Das A, Worku M (2021) Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theor Appl Genet 16:1–24

    Google Scholar 

  • Prasanna YL, Rao R (2014) Effect of waterlogging on growth and seed yield in greengram genotypes. Int J Food Agri Vet Sci 4:124–128

    Google Scholar 

  • Qian Y, Ren Q, Zhang J, Chen L (2019) Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Gene 692:68–78

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plan Cell Physiol 52(9):1569–1582

    Article  CAS  Google Scholar 

  • Qiu F, Zheng Y, Zhang Z, Xu S (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Annals Bot 99(6):1067–1081

    Article  Google Scholar 

  • Rafique S, Abdin MZ, Alam W (2020) Response of combined abiotic stresses on maize (Zea mays L.) inbred lines and interaction among various stresses. Maydica 64(3):8

    Google Scholar 

  • Rahman H, Pekic S, Lazic-Jancic V, Quarrie SA, Shah SM, Pervez A, Shah MM (2011) Molecular mapping of quantitative trait loci for drought tolerance in maize plants. Genet Mol Res 10(2):889–901

    Article  CAS  PubMed  Google Scholar 

  • Rakshit S, Singh NP, Khandekar N and Rai PK (2021) Diversification of cropping system in Punjab and Haryana through cultivation of maize, pulses and oilseeds. Policy paper. ICAR-Indian Institute of Maize Research, Ludhiana, 37

  • Reneau JW, Khangura RS, Stager A, Erndwein L, Weldekidan T, Cook DD, Dilkes BP, Sparks EE (2020) Maize brace roots provide stalk anchorage. Plant Direct 4(11):e00284

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor App Genet 94(6–7):887–96

    Article  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 1344:1683–1696

    Article  CAS  Google Scholar 

  • Rodríguez VM, Butrón A, Malvar RA, Ordás A, Revilla P (2008) Quantitative trait loci for cold tolerance in the maize IBM population. Int J Plant Sci 169(4):551–556

    Article  Google Scholar 

  • Rodríguez VM, Butrón A, Rady MOA, Soengas P, Revilla P (2014) Identification of quantitative trait loci involved in the response to cold stress in maize (Zea mays L.). Mol Breed 33:363–371

    Article  CAS  Google Scholar 

  • Rossi EA, Ruiz M, Rueda Calderón MA, Bruno CI, Bonamico NC, Balzarini MG (2019) Meta-analysis of QTL studies for resistance to fungi and viruses in maize. Crop Sci 59(1):125–139

    Article  CAS  Google Scholar 

  • Sah RP, Chakraborty M, Prasad K, Pandit M, Tudu VK, Chakravarty MK, Narayan SC, Rana M, Moharana D (2020) Impact of water deficit stress in maize: phenology and yield components. Sci Rep 10(1):1–5

    Article  CAS  Google Scholar 

  • Said JI, Lin Z, Zhang X, Song M, Zhang J (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom 14(1):1–22

    Article  CAS  Google Scholar 

  • Sandhu D, Pudussery MV, Kumar R, Pallete A, Markley P, Bridges WC, Sekhon RS (2020) Characterization of natural genetic variation identifies multiple genes involved in salt tolerance in maize. Funct Integr Genomics 20(2):261–275

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65(6):907–921

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Li Y, Jiang Y, Jiang Z, Hao W, Yuan Y (2013) Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing. Plant Mol Biol Rep 31(6):1485–1491

    Article  CAS  Google Scholar 

  • Shanmugavadivel PS, Chandra P, Amitha MSV (2019) Advances in rice research for abiotic stress tolerance, chapter 42-molecular approaches for dissecting and improving drought and heat tolerance in rice. Woodhead Publishing,pp, Cambridge, pp 839–867

    Book  Google Scholar 

  • Sheoran S, Kumar S, Kumar P, Meena RS, Rakshit S (2021) Nitrogen fixation in maize: breeding opportunities. Theor Appl Genet 7:1–8

    Google Scholar 

  • Shi W, Cheng J, Wen X (2018) Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.). PeerJ 6:e4752. https://doi.org/10.7717/peerj.4752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci 8:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh P, Sinha AK (2016) A positive feedback loop governed by SUB1A1 interaction with mitogen-activated protein kinase3 imparts submergence tolerance in rice. Plant Cell 28:1127–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soriano JM, Alvaro F (2019) Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep 9(1):1–4

    Article  Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28(15):2082–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Mu C, Zheng H, Lu S, Zhang H, Zhang X, Liu X (2018) Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion. Sci Rep 8:16203–16203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy BPM, Vikram P, Dixit S, Ahmed HU, Kumar A (2011) Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genom 12:319

    Article  Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Inghelandt D, Frey FP, Ries D, Stich B (2019) QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize. Sci Rep 9(1):1–6

    Article  CAS  Google Scholar 

  • Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLsQTL and QTL× environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112(6):1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Veyrieras J, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AY, Zhang CQ (2008) QTL mapping for chlorophyll content in maize. Hereditas 30:1083–1091

    CAS  PubMed  Google Scholar 

  • Wang F, Tong W, Zhu H, Kong W, Peng R, Liu Q, Yao Q (2016a) A novel Cys 2/His 2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Planta 243(3):783–797

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu J, Deng D, Ding H, Bian Y, Yin Z, Wu Y, Zhou B, Zhao Y (2016) A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta 243(2):459–71

    Article  CAS  PubMed  Google Scholar 

  • Welcker C, Boussuge B, Bencivenni C, Ribaut JM, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of Anthesis-Silking Interval to water deficit. J Exp Bot 58(2):339–349

    Article  CAS  PubMed  Google Scholar 

  • William HM, Trethowan R, Crosby-Galvan EM (2007) Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica 157(3):307–319

    Article  Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc Lond, B Biol Sci 363(1492):703–716

    Article  CAS  Google Scholar 

  • Woodhouse MR, Sen S, Schott D, Portwood JL, Freeling M, Walley JW, Andorf CM, Schnable JC (2021) qTeller: a tool for comparative multi-genomic gene expression analysis. Bioinformatics 38(1):236–242

    Article  CAS  Google Scholar 

  • Xie R, Pan X, Zhang J, Ma Y, He S, Zheng Y, Ma Y (2018) Effect of salt-stress on gene expression in citrus roots revealed by RNA-seq. Funct Integr Genomics 18(2):155–173

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Zheng H, Yang Z, Guo J, Liu T, Sun L et al (2018) Physiological and proteomic analysis of maize seedling response to water deficiency stress. J Plant Physiol 228:29–38

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Jia H, Chen X, Hao L, An H, Guo X (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55(12):2060–2076

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Q (2021) Crucial waterlogging-responsive genes and pathways revealed by comparative physiology and transcriptome in tropical and temperate maize (Zea mays L.) inbred Lines. J Plant Biol 64(4):313–325

  • Yong HC, Sung SK, Hun TO, Eun SL et al (2019) The physiological functions of universal stress protein and their molecular mechanism to protect plants from environmental stresses. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00750

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu F, Liang K, Zhang Z, Du D, Zhang X, Zhao H, Basir UI, Qiu F (2018) Dissecting the genetic architecture of waterlogging stress-related traits uncovers a key waterlogging tolerance gene in maize. Theor Appl Genet 131(11):2299–2310

    Article  CAS  PubMed  Google Scholar 

  • Zaidi P, Zaman-Allah M, Trachsel S, Seetharam K, Cairns J, Vinayan M (2016) Phenotyping for abiotic stress tolerance in maize: heat stress. CIMMYT, Hyderabad

    Google Scholar 

  • Zaidi PH, Rashid Z, Vinayan MT, Almeida GD, Phagna RK, Babu R (2015) QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. PLoS One 10(4):e0124350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenda T, Liu S, Wang X, Liu G, Jin H, Dong A, Yang Y, Duan H (2019) Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. Int J Mol Sci 20(6):1268

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang D, Tong J, Xu Z, Wei P, Xu L, Wan Q, Huang Y, He X, Yang J, Shao H, Ma H (2016a) Soybean C2H2-type zinc finger protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic Arabidopsis. Front Plant Sci 7:325

    PubMed  PubMed Central  Google Scholar 

  • Zhang J-h, Sun H-I, Zhao X-Y, Liu X-M (2016b) Arabidopsis casein kinase 1-like 8 enhances NaCl tolerance, early flowering, and the expression of flowering-related genes. J Plant Interact 11:138–145

    Article  CAS  Google Scholar 

  • Zhang JY, Cruz De Carvalho MH, Torres-Jerez I, Kang YUN, Allen SN, Huhman DV, Tang Y, Murray J, Sumner LW, Udvardi MK (2014) Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant Cell Environ 37(11):2553–2576

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52(11):996–1007

    Article  PubMed  Google Scholar 

  • Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, Lai J, Jiang C (2019) A HAK family Na (+) transporter confers natural variation of salt tolerance in maize. Nature Plants 5(12):1297–1308

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li J, Liu A, Zou J, Zhou X, Xiang J, Rerksiri W, Peng Y, Xiong X, Chen X (2012) Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. PLoS One 7(11):e49652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Shabala S, Koutoulis A, Shabala L, Zhou M (2017) Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. Planta 245(2):283–295

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Tang B, Yu F, Li L, Wang M, Xue Y, Zhang Z, Yan J, Yue B, Zheng Y, Qiu F (2013) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Rep 31(3):594–606

    Article  CAS  Google Scholar 

  • Zhao X, Peng Y, Zhang J, Fang P, Wu B (2018a) Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions. Crop Sci 58(2):507–520

    Article  CAS  Google Scholar 

  • Zhao Y, Cheng X, Liu X, Wu H, Bi H, Xu H (2018) The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Front Plant Sci 9:1426

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou M-L, Tang Y-X, Wu Y-M (2012) Genome-wide analysis of AP2/ERF transcription factor family in Zea mays. Curr Bioinform 7(3):324–332

    Article  CAS  Google Scholar 

  • Zhou P, Enders TA, Myers ZA, Magnusson E, Crisp PA, Noshay JM, Gomez-Cano F, Liang Z, Grotewold E, Greenham K, Springer NM (2021) Prediction of conserved and variable heat and cold stress response in maize using cis-regulatory information. Plant Cell 00:1–21. https://doi.org/10.1093/plcell/koab267

    Article  Google Scholar 

  • Zhu JJ, Wang XP, Sun CX, Zhu XM, Meng LI, Zhang GD, Tian YC, Wang ZL (2011) Mapping of QTL associated with drought tolerance in a semi-automobile rain shelter in maize (Zea mays L.). Agri Sci China 10(7):987–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Seema Sheoran: Data compilation and analysis, interpretation of results, manuscript drafting. Mamta Gupta: Data formatting and analysis. Shweta Kumari: Meta-QTL analysis. Sandeep Kumar: QTL studies data compilation and candidate genes description identification. Sujay Rakshit: Planning, interpretation and editing of manuscript. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Sujay Rakshit.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors give consent for the publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key message

A total of 32 meta-QTL conferring tolerances to different abiotic stresses in maize were identified from 244 initial major QTL detected in 33 published QTL mapping studies.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheoran, S., Gupta, M., Kumari, S. et al. Meta-QTL analysis and candidate genes identification for various abiotic stresses in maize (Zea mays L.) and their implications in breeding programs. Mol Breeding 42, 26 (2022). https://doi.org/10.1007/s11032-022-01294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-022-01294-9

Keywords

Navigation