[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

EmoMadrid: An emotional pictures database for affect research

  • Original Paper
  • Published:
Motivation and Emotion Aims and scope Submit manuscript

Abstract

Emotional scenes are, along with facial expressions, the most employed stimuli in Affective Sciences. However, as compared to facial expressions, available emotional scene databases are scarce and, in some cases, obsolete and overused. This paper describes EmoMadrid (http://www.psicologiauam.es/CEACO/EmoMadrid.htm), an open access database currently consisting of 813 emotional pictures. Valence and Arousal of each of these pictures were assessed by an average sample of 146 volunteers per session, who evaluated an average of 155 pictures each. Total participants up to the present is 768. EmoMadrid includes information, not provided in other databases, on low order visual parameters such as spatial frequency, luminosity, and chromatic complexity. These parameters are of crucial interest, since they have been revealed to interact with the affective content of pictures. EmoMadrid shows a robust short and long term reliability (under and over 5 years, respectively) and has already been employed in 15 Human Neuroscience and Behavior published studies, despite it has only been described in its web page.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A search carried out in February 2019 in Google Scholar introducing, enclosed in double quotes, the complete name of all emotional scene databases described here (from 2016, the year in which the most recent was created, to present) yielded 4380 results for IAPS and less than 200 for each of the rest.

  2. IAPS: 5 s. GAPED: 4 s. NAPS: 3 s. In OASIS, stimulus duration is self-paced by evaluators.

References

  • Andreu, C. I., Cosmelli, D., Slagter, H. A., & Franken, I. H. (2018). Effects of a brief mindfulness-meditation intervention on neural measures of response inhibition in cigarette smokers. PLoS ONE, 13(1), e0191661.

    PubMed  PubMed Central  Google Scholar 

  • Anil Kumar, K. M., Kiran, B. R., Shreyas, B. R., & Victor, S. J. (2015). A multimodal approach to detect user’s emotion. Procedia Computer Science, 70, 296–303.

    Google Scholar 

  • Bradley, M. M., Codispoti, M., Sabatinelli, D., & Lang, P. J. (2001). Emotion and motivation II: Sex differences in picture processing. Emotion, 3, 300–319.

    Google Scholar 

  • Bradley, M. M., Hamby, S., Löw, A., & Lang, P. J. (2007). Brain potentials in perception: Picture complexity and emotional arousal. Psychophysiology, 44, 364–373.

    PubMed  Google Scholar 

  • Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 49–59). Oxford: Oxford University Press.

    Google Scholar 

  • Carboni, A., Kessel, D., Capilla, A., & Carretié, L. (2017). The influence of affective state on exogenous attention to emotional distractors: Behavioral and electrophysiological correlates. Scientific Reports, 7, 8068.

    PubMed  PubMed Central  Google Scholar 

  • Carretié, L., Kessel, D., Carboni, A., López-Martín, S., Albert, J., Tapia, M., et al. (2013). Exogenous attention to facial vs non-facial emotional visual stimuli. Social Cognitive and Affective Neuroscience, 8, 764–773.

    PubMed  Google Scholar 

  • Carretié, L., Ruiz-Padial, E., López-Martín, S., & Albert, J. (2011). Decomposing unpleasantness: Differential exogenous attention to disgusting and fearful stimuli. Biological Psychology, 86, 247–253.

    PubMed  Google Scholar 

  • Charles, S. T., Reynolds, C. A., & Gatz, M. (2001). Age-related differences and change in positive and negative affect over 23 years. Journal of Personality and Social Psychology, 80(1), 136.

    PubMed  Google Scholar 

  • Codispoti, M., Mazzetti, M., & Bradley, M. M. (2009). Unmasking emotion: Exposure duration and emotional engagement. Psychophysiology, 46, 731–738.

    PubMed  Google Scholar 

  • Dan-Glauser, E. S., & Scherer, K. R. (2011). The Geneva affective picture database (GAPED): A new 730-picture database focusing on valence and normative significance. Behavior Research Methods, 43, 468–477.

    PubMed  Google Scholar 

  • Delplanque, S., N’diaye, K., Scherer, K., & Grandjean, D. (2007). Spatial frequencies or emotional effects? A systematic measure of spatial frequencies for IAPS pictures by a discrete wavelet analysis. Journal of Neuroscience Methods, 165, 144–150.

    PubMed  Google Scholar 

  • Ebner, N. C., Riediger, M., & Lindenberger, U. (2010). FACES—A database of facial expressions in young, middle-aged, and older women and men: Development and validation. Behavior Research Methods, 42, 351–362.

    PubMed  Google Scholar 

  • Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6, 169–200.

    Google Scholar 

  • Frühholz, S., Jellinghaus, A., & Herrmann, M. (2011). Time course of implicit processing and explicit processing of emotional faces and emotional words. Biological Psychology, 87, 265–274.

    PubMed  Google Scholar 

  • Haberkamp, A., Glombiewski, J. A., Schmidt, F., & Barke, A. (2017). The DIsgust-RelaTed-images (DIRTI) database: Validation of a novel standardized set of disgust pictures. Behaviour Research and Therapy, 89, 86–94.

    PubMed  Google Scholar 

  • Haxby, J. V., & Gobbini, M. I. (2011). Distributed neural systems for face perception. In A. J. Calder, G. Rhodes, M. H. Johnson, & J. V. Haxby (Eds.), The Oxford handbook of face perception (pp. 93–107). Oxford: Oxford University Press.

    Google Scholar 

  • Jun, S., Lee, S. K., & Han, S. (2018). Differences in large-scale and sliding-window-based functional networks of reappraisal and suppression. Science of Emotion and Sensibility, 21, 83–102.

    Google Scholar 

  • Kosonogov, V., Sánchez-Navarro, J. P., Martínez-Selva, J. M., Torrente, G., & Carrillo-Verdejo, E. (2016). Social stimuli increase physiological reactivity but not defensive responses. Scandinavian Journal of Psychology, 57, 393–398.

    PubMed  Google Scholar 

  • Kuchinke, L., Schlochtermeier, L., & Jacobs, A. M. (2011). Differences in the neural processing of emotional pictures and words are modulated by stimulus complexity. Psychophysiology, 48, S3.

    Google Scholar 

  • Kurdi, B., Lozano, S., & Banaji, M. R. (2016). Introducing the Open Affective Standardized Image Set (OASIS). Behavior Research Methods, 37, 626–630.

    Google Scholar 

  • Lakens, D., Fockenberg, D. A., Lemmens, K. P., Ham, J., & Midden, C. J. (2013). Brightness differences influence the evaluation of affective pictures. Cognition and Emotion, 27, 1225–1246.

    PubMed  Google Scholar 

  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Gainesville, FL: University of Florida.

    Google Scholar 

  • Leigland, L. A., Schulz, L. E., & Janowsky, J. S. (2004). Age related changes in emotional memory. Neurobiology of Aging, 25, 1117–1124.

    PubMed  Google Scholar 

  • López-Martín, S., Albert, J., Fernández-Jaén, A., & Carretié, L. (2015). Emotional response inhibition in children with attention-deficit/hyperactivity disorder: Neural and behavioural data. Psychological Medicine, 45, 2057–2071.

    PubMed  Google Scholar 

  • Lundqvist, D., Flykt, A., & Öhman, A. (1998). The Karolinska directed emotional faces (KDEF). CD ROM from Department of Clinical Neuroscience, Psychology Section, Karolinska Institutet.

  • Marchewka, A., Żurawski, Ł., Jednoróg, K., & Grabowska, A. (2014). The Nencki Affective Picture System (NAPS): Introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behavior Research Methods, 46(2), 596–610.

    PubMed  Google Scholar 

  • Mavratzakis, A., Herbert, C., & Walla, P. (2016). Emotional facial expressions evoke faster orienting responses, but weaker emotional responses at neural and behavioural levels compared to scenes: A simultaneous EEG and facial EMG study. Neuroimage, 124, 931–946.

    PubMed  Google Scholar 

  • Mel’nikov, M., Petrovskii, E., Bezmaternykh, D., Kozlova, L., Shtark, M., Savelov, A., et al. (2018). fMRI responses in healthy individuals and in patients with mild depression to presentation of pleasant and unpleasant images. Bulletin of Experimental Biology and Medicine, 164, 601–604.

    PubMed  Google Scholar 

  • Michałowski, J. M., Droździel, D., Matuszewski, J., Koziejowski, W., Jednoróg, K., & Marchewka, A. (2017). The set of fear inducing pictures (SFIP): Development and validation in fearful and nonfearful individuals. Behavior Research Methods, 49, 1407–1419.

    PubMed  Google Scholar 

  • Moltó, J., Montañés, S., Poy, R., Segarra, P., Pastor, M. C., Tormo, M. P., et al. (1999). Un nuevo método para el estudio experimental de las emociones: El International Affective Picture System (IAPS). Adaptación española [A new method for the experimental study of emotions: The International Affective Picture System (IAPS). Spanish adaptation]. Revista de Psicología General y Aplicada, 52, 55–87.

    Google Scholar 

  • Müller, M. M., Andersen, S. K., & Keil, A. (2008). Time course of competition for visual processing resources between emotional pictures and foreground task. Cerebral Cortex, 18, 1892–1899.

    PubMed  Google Scholar 

  • Olofsson, J. K., Nordin, S., Sequeira, H., & Polich, J. (2008). Affective picture processing: An integrative review of ERP findings. Biological Psychology, 77, 247–265.

    PubMed  Google Scholar 

  • Perlman, S. B., & Pelphrey, K. A. (2001). Developing connections for affective regulation: Age-related changes in emotional brain connectivity. Journal of Experimental Child Psychology, 108(3), 607–620.

    Google Scholar 

  • Román, F. J., García-Rubio, M. J., Privado, J., Kessel, D., López-Martín, S., Martínez, K., et al. (2015). Adaptive working memory training reveals a negligible effect of emotional stimuli over cognitive processing. Personality and Individual Differences, 74, 165–170.

    Google Scholar 

  • Romero-Ferreiro, V., Aguado, L., Torío, I., Sánchez-Morla, E. M., Caballero-González, M., & Rodriguez-Jimenez, R. (2018). Influence of emotional contexts on facial emotion attribution in schizophrenia. Psychiatry Research, 270, 554–559.

    PubMed  Google Scholar 

  • Ruiz-Padial, E., Medialdea, M. M., del Paso, G. R., & Thayer, J. F. (2018). Individual differences in attentional capture by pictures of fear and disgust as indexed by cardiac responses. Journal of Psychophysiology, 32(4), 191–201.

    Google Scholar 

  • Russell, J. A. (1979). Affective space is bipolar. Journal of Personality and Social Psychology, 37, 345–356.

    Google Scholar 

  • Saal, F. E., Downey, R. G., & Lahey, M. A. (1980). Rating the ratings: Assessing the psychometric quality of rating data. Psychological Bulletin, 88, 413–428.

    Google Scholar 

  • Sabatinelli, D., Fortune, E. E., Li, Q., Siddiqui, A., Krafft, C., Oliver, W. T.,… & Jeffries, J. (2011). Emotional perception: meta-analyses of face and natural scene processing. Neuroimage, 54, 2524–2533.

  • Soares, A., Pinheiro, A., Costa, A., Frade, C., Comesaña, M., & Pureza, R. (2015). Adaptation of the international affective picture system (IAPS) for european portuguese. Behavior Research Methods, 47, 1159–1177.

    PubMed  Google Scholar 

  • Thom, N., Knight, J., Dishman, R., Sabatinelli, D., Johnson, D. C., & Clementz, B. (2014). Emotional scenes elicit more pronounced self-reported emotional experience and greater EPN and LPP modulation when compared to emotional faces. Cognitive, Affective, & Behavioral Neuroscience, 14, 849–860.

    Google Scholar 

  • Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., et al. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168, 242–249.

    PubMed  PubMed Central  Google Scholar 

  • Urry, H. L., & Gross, J. J. (2010). Emotion regulation in older age. Current Directions in Psychological Science, 19, 352–357.

    Google Scholar 

  • Verschoor, A. M., & van Wieringen, P. C. W. (1970). Vigilance performance and skin conductance. Acta Psychologica, 33, 394–401.

    PubMed  Google Scholar 

  • Vila, J., Sánchez, M., Ramírez, I., Fernández, M. C., Cobos, P., Rodríguez, S.,… Moltó, J. (2001). El Sistema Internacional de Imágenes Afectivas (IAPS): Adaptación española. Segunda parte [The International Affective Picture System (IAPS): Spanish adaptation. Second part]. Revista de Psicología General y Aplicada, 54, 635–657.

  • Xu, M., Ding, C., Li, Z., Zhang, J., Zeng, Q., Diao, L., et al. (2016a). The divergent effects of fear and disgust on unconscious inhibitory control. Cognition and Emotion, 30, 731–744.

    PubMed  Google Scholar 

  • Xu, M., Li, Z., Ding, C., Zhang, J., Fan, L., Diao, L., et al. (2015). The divergent effects of fear and disgust on inhibitory control: An ERP study. PLoS ONE, 10(6), e0128932.

    PubMed  PubMed Central  Google Scholar 

  • Xu, M., Li, Z., Fan, L., Sun, L., Ding, C., Li, L., et al. (2016b). Dissociable effects of fear and disgust in proactive and reactive inhibition. Motivation and Emotion, 40, 334–342.

    Google Scholar 

Download references

Acknowledgements

We wish to thank Elisabeth Ruiz Padial and Francisco Mercado for their help in the assessment of EmoMadrid pictures at the Universidad de Jaén and Universidad Rey Juan Carlos, respectively. We also acknowledge the disinterested contribution made by the photographers Galder Izaguirre, Víctor Nogales, Óscar Rodrigo and Jordi García-Pons.

Funding

This work was supported by the FEDER/Ministerio de Ciencia, Innovación y Universidades (PGC2018-093570-B-I00) and by the Comunidad de Madrid (S2015/HUM-3327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tapia.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carretié, L., Tapia, M., López-Martín, S. et al. EmoMadrid: An emotional pictures database for affect research. Motiv Emot 43, 929–939 (2019). https://doi.org/10.1007/s11031-019-09780-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11031-019-09780-y

Keywords

Navigation