Abstract
Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer’s and Parkinson’s. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- 5-HT:
-
Serotonin
- 5-HTP:
-
5-Hydroxytryptophan
- 6-OHDA:
-
6-Hydroxydopamine
- AChE:
-
Acetylcholinesterase
- A:
-
Adrenaline
- AD:
-
Alzheimer’s disease
- AEA:
-
Anandamide
- AR:
-
Asparagus racemosus
- BER:
-
Berberine
- BBB:
-
Blood–brain barrier
- BuChE:
-
Butyrylcholinesterase
- bMAO:
-
Bovine monoamine oxidase
- \(n\)-BuOH:
-
1-Butanol
- CAR:
-
Chloroform extract
- CB1:
-
Cannabinoid receptor type 1
- clogP:
-
Calculated partition coefficient
- CNS:
-
Central nervous system
- DA:
-
Dopamine
- DOPA:
-
Levodopa
- DOPAC:
-
3,4-Dihydroxyphenyl acetic acid
- EGCG:
-
Epigallocatechine gallate
- FST:
-
Forced swimming test
- \(\hbox {hA}_{\mathrm{2A}}\) :
-
Human adenosine 2A
- HAR:
-
Hexane extract
- HPE:
-
Hypericum perforatum methanol extract
- HPLC:
-
High-performance liquid chromatography
- HR-MS:
-
High-resolution mass spectrometry
- \(\hbox {IC}_{50}\) :
-
Half maximal inhibitory concentration
- IL-4:
-
Interleukin-4
- IFN-\(\upgamma \) :
-
Interferon \(\upgamma \)
- \(K_{\mathrm{d}}\) :
-
Dissociation constant
- kDa:
-
KiloDalton
- \(K_{\mathrm{i}}\) :
-
Inhibition constant
- \(K_{\mathrm{m}}\) :
-
Michaelis constant
- \(I_{\mathrm{max}}\) :
-
Maximal rate of inactivation
- \(\hbox {LD}_{50}\) :
-
Half lethal dose
- LED:
-
Light-emitting diode
- MAO:
-
Monoamine oxidase
- mg/kg:
-
Milligram/kilogram
- MAR:
-
Methanol extract
- \(\upmu \)M:
-
Micromolar
- MEKC:
-
Micellar electrokinetic chromatography
- MMP:
-
Mitochondrial membrane potential
- \(\hbox {MPP}^{+}\) :
-
1-Methyl-4-phenylpyridinium
- MPT:
-
Mitochondrial permeability transition
- MPTP:
-
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- NA:
-
Noradrenaline
- ND:
-
Not determined
- nM:
-
Nanomolar
- NMDA:
-
N-Methyl-d-aspartate
- NMR:
-
Nuclear magnetic resonance
- PBS:
-
Phosphate buffer system
- PC12:
-
Prostatic cancer cells
- PD:
-
Parkinson’s disease
- PEA:
-
Phenylethylamine
- p\(\hbox {IC}_{50}\) :
-
\(-\)log \(\hbox {IC}_{50}\)
- pMAO:
-
Pig brain monoamine oxidase
- PRF:
-
Proanthocyanidin-rich fraction
- PwTX-I:
-
6-Hydroxytripargine
- PwTX-II:
-
1-(4-Guanidinobutoxy)-6-hydroxy-1,2,3,4-tetrahydro-\(\upbeta \)-carboline
- rMAO:
-
Rat monoamine oxidase
- SFE:
-
Supercritical fluid extraction
- ThC:
-
Tetrahydrocurcumin
- THC:
-
Tetrahydrocannabinol
- TST:
-
Immobility time in tail suspension test
- \(V_{\mathrm{max}}\) :
-
Maximum reaction rate
References
Blaschko H, Richter D, Schlossmann H (1937) The inactivation of adrenaline. J Physiol 90:1–17
Zeller EA (1938) Über den enzymatischen abbau von histamin und diaminen. 2 Mitteilung. Helv Chim Acta 21:880–890
Murphy DL (1978) Substrate-selective monoamine oxidases: inhibitor, tissue, species and functional differences. Biochem Pharmacol 27:1889–1893
Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297
Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85:4934–4938
De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci USA 102:12684–12689. doi:10.1073/pnas.0505975102
Binda C, Hubálek F, Li M, Edmondson DE, Mattevi A (2004) Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. FEBS Lett 564:225–228. doi:10.1016/S0014-5793(04)00209-1
Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase a and monoamine oxidase b cell populations in human brainstem. Neuroscience 25:439–456. doi:10.1016/0306-4522(88)90250-3
Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60:1527–1533. doi:10.1016/j.addr.2008.06.002
Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127. doi:10.1093/bmb/ldn013
Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309. doi:10.1038/nrn1883
Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand 80:47–54
Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52:515–520. doi:10.1111/j.1471-4159.1989.tb09150.x
Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49:1–20
Benedetti MS, Dostert P (1989) Monoamine oxidase, brain ageing and degenerative diseases. Biochem Pharmacol 38:555–561. doi:10.1016/0006-2952(89)90198-6
Emilsson L, Saetre P, Balciuniene J, Castensson A, Cairns N, Jazin EE (2002) Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients. Neurosci Lett 326:56–60. doi:10.1016/S0304-3940(02)00307-5
Abell CW, Kwan SW (2001) Molecular characterization of monoamine oxidases A and B. Prog Nucl Acid Res Mol Biol 65:129–156. doi:10.1016/S0079-6603(00)65004-3
Elmer LW, Bertoni JM (2008) The increasing role of monoamine oxidase type B inhibitors in Parkinson’s disease therapy. Expert Opin Pharmacother 9:2759–2772. doi:10.1517/14656566.9.16.2759
Bolasco A, Fioravanti R, Carradori S (2005) Recent development of monoamine oxidase inhibitors. Expert Opin Ther Pat 15:1763–1782. doi:10.1517/13543776.15.12.1763
Secci D, Carradori S, Bolasco A, Bizzarri B, D’Ascenzio M, Maccioni E (2012) Discovery and optimization of pyrazoline derivatives as promising monoamine oxidase inhibitors. Curr Top Med Chem 12:2240–2257. doi:10.2174/1568026611212200009
Secci D, Bolasco A, Chimenti P, Carradori S (2011) The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant/anticonvulsant agents. Curr Med Chem 18:5114–5144. doi:10.2174/092986711797636090
Bolasco A, Carradori S, Fioravanti R (2010) Focusing on new monoamine oxidase inhibitors. Expert Opin Ther Pat 20:909–939. doi:10.1517/13543776.2010.495716
Carradori S, Secci D, Bolasco A, Chimenti P, D’Ascenzio M (2012) Patent-related survey on new monoamine oxidase inhibitors and their therapeutic potential. Expert Opin Ther Pat 22:759–801. doi:10.1517/13543776.2012.698613
Herraiz T, Chaparro C (2005) Human monoamine oxidase is inhibited by tobacco smoke: \(\beta \)-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 326:378–386. doi: 10.1016/j.bbrc.2004.11.033
Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci USA 105:5739–5744. doi:10.1073/pnas.0710626105
Reniers J, Robert S, Frederick R, Masereel B, Vincent S, Wouters J (2011) Synthesis and evaluation of \(\beta \)-carboline derivatives as potential monoamine oxidase inhibitors. Bioorg Med Chem 19:134–144. doi: 10.1016/j.bmc.2010.11.041
Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT, Swanson PD (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738. doi:10.1093/aje/155.8.732
Chen JF, Steyn S, Staal R, Petzer JP, Xu K, Van Der Schyf CJ, Castagnoli K, Sonsalla PK, Castagnoli N Jr, Schwarzschild MA (2002) 8-(3-Chlorostyryl)caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J Biol Chem 277:36040–36044. doi:10.1074/jbc.M206830200
Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143
Petzer JP, Castagnoli N Jr, Schwarzschild MA, Chen JF, Van der Schyf CJ (2009) Dual-target-directed drugs that block monoamine oxidase B and adenosine A(2A) receptors for Parkinson’s disease. Neurotherapeutics 6:141–151. doi:10.1016/j.nurt.2008.10.035
Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599. doi:10.1021/jm0704090
Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. doi:10.1021/np068054v
Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153. doi:10.1021/np040106y
Breinbauer R, Manger M, Scheck M, Waldmann H (2002) Natural product guided compound library development. Curr Med Chem 9:2129–2145. doi:10.2174/0929867023368773
Vina D, Serra S, Lamela M, Delogu G (2012) Herbal natural products as a source of monoamine oxidase inhibitors: a review. Curr Top Med Chem 12:2131–2144. doi:10.2174/1568026611212200003
Rajput MS (2010) Natural monoamine oxidase inhibitors: a review. J Pharmacy Res 3:482–485
Lin RD, Hou WC, Yen KY, Lee MH (2003) Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines. Phytomedicine 10:650–656. doi:10.1078/0944-7113-00324
Clarke SED, Ramsay RR (2011) Dietary inhibitors of monoamine oxidase A. J Neural Transm 118:1031–1041. doi:10.1007/s00702-010-0537-x
Yoshino S, Hara A, Sakakibara H, Kawabata K, Tokumura A, Ishisaka A, Kawai Y, Terao J (2011) Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition 27:847–852. doi:10.1016/j.nut.2010.09.002
Pan Y, Kong L, Xia X, Zhang W, Xia Z, Jiang F (2005) Antidepressant-like effect of icariin and its possible mechanism in mice. Pharmacol Biochem Behav 82:686–694. doi:10.1016/j.pbb.2005.11.010
Lee MH, Lin RD, Shen LY, Yang LL, Yen KY, Hou WC (2001) Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J Agric Food Chem 49:5551–5555. doi:10.1021/jf010622j
Chimenti F, Cottiglia F, Bonsignore L, Casu L, Casu M, Floris C, Secci D, Bolasco A, Chimenti P, Granese A, Befani O, Turini P, Alcaro S, Ortuso F, Trombetta G, Loizzo A, Guarino I (2006) Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J Nat Prod 69:945–949. doi:10.1021/np060015w
Saaby L, Rasmussen HB, Jäger AK (2009) MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. J Ethnopharmacol 121:178–181. doi:10.1016/j.jep.2008.10.012
Han XH, Hong SS, Hwang JS, Lee MK, Hwang BY, Ro JS (2007) Monoamine oxidase inhibitory components from Cayratia japonica. Arch Pharm Res 30:13–17
Hou WC, Lin RD, Chen CT, Lee MH (2005) Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J Ethnopharmacol 100:216–220. doi:10.1016/j.jep.2005.03.017
Hwang JS, Lee SA, Hong SS, Lee KS, Lee MK, Hwang BY, Ro JS (2005) Monoamine oxidase inhibitory components from the roots of Sophora flavescens. Arch Pharm Res 28:190–194
Haraguchi H, Tanaka Y, Kabbash A, Fujioka T, Ishizu T, Yagi A (2004) Monoamine oxidase inhibitors from Gentiana lutea. Phytochemistry 65:2255–2260. doi:10.1016/j.phytochem.2004.06.025
Bandaruk Y, Mukai R, Kawamura T, Nemoto H, Terao J (2012) Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J Agric Food Chem 60:10270–10277. doi:10.1021/jf303055b
Han XH, Hong SS, Hwang JS, Jeong SH, Hwang JH, Lee MH, Lee MK, Lee D, Ro JS, Hwang BY (2005) Monoamine oxidase inhibitory constituents from the fruits of Cudrania tricuspidata. Arch Pharmacal Res 28:1324–1327
Han XH, Hwang JH, Hong SS, Choe S, Lee C, Lee MS, Lee D, Lee MK, Lee MK, Hwang BY (2010) Monoamine oxidase inhibitory flavonoids from the root bark of Cudrania tricuspidata. Nat Prod Sci 16:75–79. doi:10.1021/np070059k
Stafford GI, Pedersen PD, Jäger AK, Van Staden J (2007) Monoamine oxidase inhibition by southern African traditional medicinal plants. S Afr J Bot 73:384–390. doi:10.1016/j.sajb.2007.03.001
Holt A, Sharman DF, Baker GB, Palcic MM (1997) A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Anal Biochem 244:384–392. doi:10.1006/abio.1996.9911
Olsen HT, Stafford GI, Van Staden J, Christensen SB, Jäger AK (2008) Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J Ethnopharmacol 117:500–502. doi:10.1016/j.jep.2008.02.015
Zhu W, Ma S, Qu R, Kang D, Liu Y (2006) Antidepressant effect of baicalin extracted from the root of Scutellaria baicalensis in mice and rats. J Pharm Biol 44:503–510. doi:10.1080/13880200600878684
Singh R, Navneet C, Singh VK (2012) In-silico study of herbal compounds (bacailin, curcumin and dronabinol) as novel MAO inhibitors for Parkinson’s disease treatment. Int J Life Sci Pharma Res 2:L81–L98
Gao L, Fang JS, Bai XY, Zhou D, Wang YT, Liu AL, Du GH (2013) In silico target fishing for the potential targets and molecular mechanisms of baicalein as an anti-parkinsonian agent: discovery of the protective effects on NMDA receptor-mediated neurotoxicity. Chem Biol Drug Des 81:675–687. doi:10.1111/cbdd.12127
Urbain A, Marston A, Grilo LS, Bravo J, Purev O, Purevsuren B, Batsuren D, Reist M, Carrupt PA, Hostettmann K (2008) Xanthones from Gentianella amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. J Nat Prod 71:895–897. doi:10.1021/np070690l
Dimitrov M, Nikolova I, Benbasat N, Kitanov G, Danchev N (2011) Acute toxicity, antidepressive and MAO inhibitory activity of mangiferin isolated from Hypericum Aucheri. Biotechnol Biotechnol Equip 25:2668–2671. doi:10.5504/bbeq2011.0099
Fowler CJ, Tipton KF, MacKay AV, Youdim MB (1982) Human platelet monoamine oxidase—a useful enzyme in the study of psychiatric disorders. Neuroscience 7:1577–1594. doi:10.1016/0306-4522(82)90016-1
Bhattacharya SK, Sanyal AK, Ghosal S (1972) Monoamine oxidase-inhibiting activity of mangiferin isolated from Canscora decussata. Naturwissenschaften 59:651
Dreiseitel A, Korte G, Schreier P, Oehme A, Locher S, Domani M, Hajak G, Sand PG (2009) Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B. Pharmacol Res 59:306–311. doi:10.1016/j.phrs.2009.01.014
Xu Y, Li S, Chen R, Li G, Barish PA, You W, Chen L, Lin M, Ku B, Pan J, Ogle WO (2010) Antidepressant-like effect of low molecular proanthocyanidin in mice: involvement of monoaminergic system. Pharmacol Biochem Behav 94:447–453. doi:10.1016/j.pbb.2009.10.007
Moreira ELG, Rial D, Aguiar AS Jr, Figueiredo CP, Siqueira JM, Dalbo S, Horst H, Oliveira J, Mancini G, dos Santos TS, Villarinho JG, Pinheiro FV, Marino-Neto J, Ferreira J, Bem AF, Latini A, Pizzolatti MG, Ribeiro-do-Valle RM, Prediger RDS (2010) Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson’s disease. J Neural Transm 117:1337–1351. doi:10.1007/s00702-010-0464-x
Matsumoto T, Suzuki O, Furuta T, Asai M, Kurokawa Y, Nimura Y, Katsumata Y, Takahashi I (1985) A sensitive fluorometric assay for serum monoamine oxidase with kynuramine as substrate. Clin Biochem 18:126–129. doi:10.1016/S0009-9120(85)80094-1
Lin SM, Wang SW, Ho SC, Tang YL (2010) Protective effect of green tea (\(-\))-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition 26:1195–1200. doi: 10.1016/j.nut.2009.11.022
Reznichenko L, Kalfon L, Amit T, Youdim MBH, Mandel SA (2010) Low dosage of rasagiline and epigallocatechin gallate synergistically restored the nigrostriatal axis in MPTP-induced Parkinsonism. Neurodegener Dis 7:219–231. doi:10.1159/000265946
Zhang XL, Jiang B, Li ZB, Hao S, An LJ (2007) Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by d-galactose. Pharmacol Biochem Behav 88:64–72. doi:10.1016/j.pbb.2007.07.004
Bi J, Wang XB, Chen L, Hao S, An LJ, Jiang B, Guo L (2008) Catalpol protects mesencephalic neurons against MPTP induced neurotoxicity via attenuation of mitochondrial dysfunction and MAO-B activity. Toxicol Vitro 22:1883–1889. doi:10.1016/j.tiv.2008.09.007
Kim JH, Kim GH, Hwang KH (2012) Monoamine oxidase and dopamine \(\beta \)-hydroxylase inhibitors from the fruits of Gardenia jasminoides. Biomol Ther 20:214–219. doi: 10.4062/biomolther.2012.20.2.214
Han YN, Choo Y, Lee YC, Moon YI, Kim SD, Choi JW (2001) Monoamine oxidase B inhibitors from the fruits of Opuntia ficus-indica var. saboten. Arch Pharm Res 24:51–54
Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005) The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 518:40–46. doi:10.1016/j.ejphar.2005.06.002
Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berlin) 201:435–442. doi:10.1007/s00213-008-1300-y
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356. doi:10.1055/s-2006-957450
Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 16:96–99. doi:10.1007/s10787-007-1614-0
Morinan A, Garratt HM (1985) An improved fluorimetric assay for brain monoamine oxidase. J Pharmacol Methods 13:213–223
Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125. doi:10.1080/10715760500233113
Ucar G, Tas C, Tümer A (2005) Monoamine oxidase inhibitory activities of the scorpion Mesobuthus gibbosus (Buthidae) venom peptides. Toxicon 45:43–52. doi:10.1016/j.toxicon.2004.09.009
Saidemberg DM, Ferreira MAB, Takahashi TN, Gomes PC, Cesar-Tognoli LMM, Da Silva-Filho LC, Tormena CF, Da Silva GVJ, Palma MS (2009) Monoamine oxidase inhibitory activities of indolylalkaloid toxins from the venom of the colonial spider Parawixia bistriata: functional characterization of PwTX-I. Toxicon 54:717–724. doi:10.1016/j.toxicon.2009.05.027
Buckholtz NS (1980) Brain serotonin and 5-hydroxyindoleacetic acid concentrations and serotonin synthesis following tetrahydro-\(\beta \)-carboline administration in mice. Naunyn Schmiedebergs Arch Pharmacol 314:215–221
Cesar LMM, Tormena CF, Marques MR, da Silva GVJ, Mendes MA, Rittner R, Palma MS (2005) Structure determination of hydroxytrypargine: a new tetrahydro-\(\beta \)-carboline toxin from the venom of the spider Parawixia bistriata. Helv Chim Acta 88:796–801. doi: 10.1002/hlca.200590056
Rommelspacher H, Meier-Henco M, Smolka M, Kloft C (2002) The levels of norharman are high enough after smoking to affect monoamine oxidase B in platelets. Eur J Pharmacol 441:115–125. doi:10.1016/S0014-2999(02)01452-8
Cesar LMM, Mendes MA, Tormena CF, Marques MR, De Souza BM, Saidemberg DM, Bittencourt JC, Palma MS (2005) Isolation and chemical characterization of PwTx-II: a novel alkaloid toxin from the venom of the spider Parawixia bistriata (Araneidae, Araneae). Toxicon 46:786–796. doi:10.1016/j.toxicon.2005.08.005
Han XH, Hong SS, Lee D, Lee JJ, Lee MS, Moon DC, Han K, Oh KW, Lee MK, Ro JS, Hwang BY (2007) Quinolone alkaloids from Evodiae fructus and their inhibitory effects on monoamine oxidase. Arch Pharm Res 30:397–401
Lee MK, Hwang BY, Lee SA, Oh GJ, Choi WH, Hong SS, Lee KS, Ro JS (2003) 1-Methyl-2-undecyl-4(1H)-quinolone as an irreversible and selective inhibitor of type B monoamine oxidase. Chem Pharm Bull 51:409–411. doi:10.1248/cpb.51.409
Krajl M (1965) A rapid microfluorimetric determination of monoamine oxidase. Biochem Pharmacol 14:1684–1685. doi:10.1016/0006-2952(65)90025-0
Lee SA, Hong SS, Han XH, Hwang JS, Oh GJ, Lee KS, Lee MK, Hwang BY, Ro JS (2005) Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem Pharm Bull 53:832–835. doi:10.1007/s12272-001-1212-7
Kong LD, Cheng CHK, Tan RX (2004) Inhibition of MAO A and B by some plant-derived alkaloids, phenols and anthraquinones. J Ethnopharmacol 91:351–355. doi:10.1016/j.jep.2004.01.013
Lee SA, Hwang JS, Han XH, Lee C, Lee MH, Choe SG, Hong SS, Lee D, Lee MK, Hwang BY (2008) Methylpiperate derivatives from Piper longum and their inhibition of monoamine oxidase. Arch Pharm Res 31:679–683. doi:10.1007/s12272-001-1212-7
Ji HF, Shen L (2011) Berberine: a potential multipotent natural product to combat Alzheimer’s disease. Molecules 16:6732–6740. doi:10.3390/molecules16086732
Peng WH, Lo KL, Lee YH, Hung TH, Lin YC (2007) Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci 81:933–938. doi:10.1016/j.lfs.2007.08.003
Kulkarni SK, Dhir A (2008) On the mechanism of antidepressant-like action of berberine chloride. Eur J Pharmacol 589:163–172. doi:10.1016/j.ejphar.2008.05.043
Castillo J, Hung J, Rodriguez M, Bastidas E, Laboren I, Jaimes A (2005) LED fluorescence spectroscopy for direct determination of monoamine oxidase B inactivation. Anal Biochem 343:293–298. doi:10.1016/j.ab.2005.05.027
Lee SS, Kai M, Lee MK (1999) Effects of natural isoquinoline alkaloids on monoamine oxidase activity in mouse brain: inhibition by berberine and palmatine. Med Sci Res 27:749–751
Kong LD, Cheng CH, Tan RX (2001) Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med 67:74–76. doi:10.1055/s-2001-10874
Lambert DM, Fowler CJ (2005) The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications. J Med Chem 48:5059–5087. doi:10.1021/jm058183t
Fišar Z (2012) Cannabinoids and monoamine neurotransmission with focus on monoamine oxidase. Prog Neuropsychopharmacol Biol Psychiatry 38:68–77. doi:10.1016/j.pnpbp.2011.12.010
Hill MN, Hillard CJ, Bambico FR, Patel S, Gorzalka BB, Gobbi G (2009) The therapeutic potential of the endocannabinoid system for the development of a novel class of antidepressants. Trends Pharmacol Sci 30:484–493. doi:10.1016/j.tips.2009.06.006
Laviolette SR, Grace AA (2006) The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. Cell Mol Life Sci 63:1597–1613. doi:10.1007/s00018-006-6027-5
Hill MN, Ho WSV, Hillard CJ, Gorzalka BB (2008) Differential effects of the antidepressants tranylcypromine and fluoxetine on limbic cannabinoid receptor binding and endocannabinoid contents. J Neural Transm 115:1673–1679. doi:10.1007/s00702-008-0131-7
Faraj BA, Davis DC, Camp VM, Mooney AJ 3rd, Holloway T, Barika G (1994) Platelet monoamine oxidase activity in alcoholics, alcoholics with drug dependence, and cocaine addicts. Alcohol Clin Exp Res 18:1114–1120. doi:10.1111/j.1530-0277.1994.tb00090.x
Fišar Z (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch Pharmacol 381:563–572. doi:10.1007/s00210-010-0517-6
Egashira T, Takayama F, Yamanaka Y (1999) The inhibition of monoamine oxidase activity by various antidepressants: differences found in various mammalian species. Jpn J Pharmacol 81:115–121. doi:10.1254/jjp.81.115
Singh GK, Garabadu D, Muruganandam AV, Joshi VK, Krishnamurthy S (2009) Antidepressant activity of Asparagus racemosus in rodent models. Pharmacol Biochem Behav 91:283–290. doi:10.1016/j.pbb.2008.07.010
Meena J, Ojha R, Muruganandam AV, Krishnamurthy S (2011) Asparagus racemosus competitively inhibits in vitro the acetylcholine and monoamine metabolizing enzymes. Neurosci Lett 503:6–9. doi:10.1016/j.neulet.2011.07.051
Naoi M, Nagatsu T (1986) Inhibition of monoamine oxidase by 3,4-dihydroxyphenylserine. J Neurochem 47:604–607. doi:10.1111/j.1471-4159.1986.tb04542.x
Mohanasundari M, Sabesan M (2007) Modulating effect of Hypericum perforatum extract on astrocytes in MPTP induced Parkinson’s disease in mice. Eur Rev Med Pharmacol Sci 11:17–20
Van Diermen D, Marston A, Bravo J, Reist M, Carrupt PA, Hostettmann K (2009) Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol 122:397–401. doi:10.1016/j.jep.2009.01.007
Mazzio EA, Harris N, Soliman KF (1998) Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Med 64:603–606. doi:10.1055/s-2006-957530
Chen XG, Jia YG, Wang BX (1992) Inhibitory effects of the extract of pilose antler on monoamine oxidase in aged mice. China J Chin Materia Med 2:107–110
Yang XW (1995) HPLC analysis and inhibitory effect of base components in pilose antler of sika deer and red deer on monoamine oxidase activity. Chin Tradit Herbal Drugs 26:17–19
Zhou R, Wang J, Li S, Liu Y (2009) Supercritical fluid extraction of monoamine oxidase inhibitor from antler velvet. Sep Purif Technol 65:275–281. doi:10.1016/j.seppur.2008.10.036
Wang BX, Chen XG (1989) Inhibitory effect of hypoxanthine on monoamine oxidase activity. Acta Pharm Sinica 24:573–577
Hwang KH, Choi K, Park KW (2012) Composition comprising the extract of Loranthus yadoriki sieb having monoamine oxidase-inhibiting activity. WO 2012/081831
Hwang KH, Song I (2003) The inhibitory activity on monoamine oxidase of the fruit of Morus alba. Kor J Pharmacogn 34:185–189
McEwen CM Jr, Cohen JD (1963) An amine oxidase in normal human serum. J Lab Clin Med 62:766–776
Secci D, Carradori S, Bolasco A, Chimenti P, Yáñez M, Ortuso F, Alcaro S (2011) Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives. Eur J Med Chem 46:4846–4852. doi:10.1016/j.ejmech.2011.07.017
Chimenti F, Bolasco A, Secci D, Bizzarri B, Chimenti P, Granese A, Carradori S (2010) Synthesis and characterization of new 3-acyl-7-hydroxy-6,8-substituted-coumarin and 3-acyl-7-benzyloxy-6,8-substituted-coumarin derivatives. J Heterocycl Chem 47:729–733. doi:10.1002/jhet.362
Chimenti F, Carradori S, Secci D, Bolasco A, Chimenti P, Granese A, Bizzarri B (2009) Synthesis and biological evaluation of novel conjugated coumarin–thiazole systems. J Heterocycl Chem 46:575–578. doi:10.1002/jhet.110
Chimenti F, Secci D, Bolasco A, Chimenti P, Bizzarri B, Granese A, Carradori S, Yáñez M, Orallo F, Ortuso F, Alcaro S (2009) Synthesis, molecular modeling, and selective inhibitory activity against human monoamine oxidases of 3-carboxamido-7-substituted coumarins. J Med Chem 52:1935–1942. doi:10.1021/jm801496u
Chimenti F, Secci D, Bolasco A, Chimenti P, Granese A, Carradori S, Befani O, Turini P, Alcaro S, Ortuso F (2006) Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of \(N, N^{\prime }\)-bis[2-oxo-2\(H\)-benzopyran]-3-carboxamides. Bioorg Med Chem Lett 16:4135–4140. doi: 10.1016/j.bmcl.2006.04.026
Petzer A, Pienaar A, Petzer JP (2013) The interactions of caffeine with monoamine oxidase. Life Sci 93:283–287. doi:10.1016/j.lfs.2013.06.020
Van der Walt MM, Terre’Blanche G, Petzer A, Lourens ACU, Petzer JP (2013) The adenosine \(\text{ A }_{{\rm 2A}}\) antagonistic properties of selected C8-substituted xanthines. Bioorg Chem 49:49–58. doi: 10.1016/j.bioorg.2013.06.006
Acknowledgments
This work was supported by Filas (Research Project No. ASR2, Regione Lazio, Italy).
Conflict of interest
The authors state no conflict of interest and have received no payment in preparation of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Carradori, S., D’Ascenzio, M., Chimenti, P. et al. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 18, 219–243 (2014). https://doi.org/10.1007/s11030-013-9490-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11030-013-9490-6