[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Device-Free Indoor Multi-target Tracking in Mobile Environment

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Indoor multiple target tracking is a promising research field that attracts many efforts. Traditional approaches for tackling this problem are usually model-based methods. WiFi-based tracking approaches suffer from high cost in retrieving the CSI information. Most RF signal-based methods provide a mathematical framework correlating movement in space to a link’s RSS value. Real RSS values are used to model the signal attenuation, and the distance correlation with signal attenuation is used to estimate locations. In this paper, we propose DCT, a noise-tolerant, unobtrusive and device-free tracking framework. DCT adopts density-based clustering to find the centers. We further use a linear function of mean RSS variances and target amount and FCM algorithm to adjust the number of targets and positions. The multiple particle filter (MPF) is adopted to refine the target tracking accuracy. DCT is tolerant for noise and multi-path effects, and can fast simultaneously tracking with a O(N) time complexity. The extensive experiments in trace-driven simulations and real implementations show that DCT is efficient and effective in tracking multiple target, and can achieve a high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. Signal Processing. IEEE Transactions on 50(2):174–188

    Article  Google Scholar 

  2. Bajaj R, Ranaweera SL, Agrawal DP (2002) Gps: location-tracking technology. Computer 35(4):92–94

    Article  Google Scholar 

  3. Bugallo MF, Lu T, Djuric PM (2007) Target tracking by multiple particle filtering. In: Aerospace conference, 2007 IEEE, pp. 1–7. IEEE

  4. Chintalapudi K, Padmanabha Iyer A, Padmanabhan VN (2010) Indoor localization without the pain. In: Proceedings of ACM MobiCom

  5. Chon J, Cha H (2011) Lifemap: a smartphone-based context provider for location-based services. IEEE Pervasive Computing 10(2):58–67

    Article  Google Scholar 

  6. Durgin GD, Rappaport TS, De Wolf DA (2002) New analytical models and probability density functions for fading in wireless communications. IEEE Transactions on Communications 50(6):1005–1015

    Article  Google Scholar 

  7. Huang W, Xiong Y, Li XY, Lin H, Mao X, Yang P, Liu Y (2014) Shake and walk: Acoustic direction finding and fine-grained indoor localization using smartphones. In: Proceedings of IEEE INFOCOM

  8. Kaltiokallio O, Bocca M, Patwari N (2014) A fade level-based spatial model for radio tomographic imaging. IEEE Trans Mob Comput 13(6):1159–1172

    Article  Google Scholar 

  9. Khaledi M, Kasera SK, Patwari N, Bocca M (2014) Energy efficient radio tomographic imaging. In: Proceedings of IEEE SECON

  10. Kotaru M, Joshi K, Bharadia D, Katti S (2015) Spotfi: Decimeter level localization using wifi. In: Proceedings of ACM SIGCOMM. ACM

  11. Kuo YS, Pannuto P, Hsiao KJ, Dutta P (2014) Luxapose: Indoor positioning with mobile phones and visible light. In: Proceedings of ACM MobiCom

  12. Nannuru S, Li Y, Zeng Y, Coates M, Yang B (2013) Radio-frequency tomography for passive indoor multitarget tracking. IEEE Trans Mob Comput 12(12):2322–2333

    Article  Google Scholar 

  13. Ni LM, Liu Y, Lau YC, Patil AP (2004) Landmarc: indoor location sensing using active rfid. Wireless networks 10(6):701–710

    Article  Google Scholar 

  14. Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3 (3):370–379

    Article  Google Scholar 

  15. Patwari N, Wilson J (2009) People-sensing spatial characteristics of rf sensor networks. arXiv preprint 0911.1972

  16. Patwari N, Wilson J (2010) Rf sensor networks for device-free localization: Measurements, models, and algorithms. Proc IEEE 98(11):1961–1973

    Article  Google Scholar 

  17. Pu Q, Gupta S, Gollakota S, Patel S (2013) Whole-home gesture recognition using wireless signals. In: Proceedings of ACM MobiCom

  18. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496

    Article  Google Scholar 

  19. Thouin F, Nannuru S, Coates M (2011) Multi-target tracking for measurement models with additive contributions. In: Proceedings of IEEE FUSION

  20. Vasisht D, Kumar S, Katabi D (2016) Decimeter-level localization with a single wifi access point. In: Proceedings of USENIX NSDI. USENIX Association

  21. Wang Y, Liu J, Chen Y, Gruteser M, Yang J, Liu H (2014) E-eyes: device-free location-oriented activity identification using fine-grained wifi signatures. In: Proceedings of ACM MobiCom

  22. Wei B, Varshney A, Patwari N, Hu W, Voigt T, Chou CT (2015) drti: directional radio tomographic imaging. In: Proceedings of ACM IPSN

  23. Wilson J, Patwari N (2010) Radio tomographic imaging with wireless networks. IEEE Trans Mob Comput 9(5):621–632

    Article  Google Scholar 

  24. Wilson J, Patwari N (2011) See-through walls: Motion tracking using variance-based radio tomography networks. IEEE Trans Mob Comput 10(5):612–621

    Article  Google Scholar 

  25. Xi W, Zhao J, Li XY, Zhao K, Tang S, Liu X, Jiang Z (2014) Electronic frog eye: Counting crowd using wifi. In: Proceedings of IEEE INFOCOM

  26. Xiong J, Jamieson K (2013) Arraytrack: a fine-grained indoor location system. In: Proceedings of USENIX NSDI

  27. Yang L, Chen Y, Li XY, Xiao C, Li M, Liu Y (2014) Tagoram: real-time tracking of mobile rfid tags to high precision using cots devices. In: Proceedings of ACM MobiCom

  28. Youssef M, Mah M, Agrawala A (2007) Challenges: device-free passive localization for wireless environments. In: Proceedings of ACM MobiCom

  29. Zhao Y, Patwari N, Phillips JM, Venkatasubramanian S (2013) Radio tomographic imaging and tracking of stationary and moving people via kernel distance. In: Proceedings of ACM IPSN

  30. Zhu X, Li Q, Chen G (2013) Apt: Accurate outdoor pedestrian tracking with smartphones. In: Proceedings of IEEE INFOCOM

Download references

Acknowledgment

This paper is supported by National Natural Science Foundation of China (No. 61502374, 61802291, 61702391 and 61902236), National Key Research and Development Project (No. 2019YFB1406400), China Postdoctoral Science Foundation (No. BX20180235), and the Fundamental Research Funds for Central Universities (No. JB190304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueshen Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Jiang, Z., Xu, Y. et al. Device-Free Indoor Multi-target Tracking in Mobile Environment. Mobile Netw Appl 25, 1195–1207 (2020). https://doi.org/10.1007/s11036-020-01540-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-020-01540-4

Keywords

Navigation