[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analysis of Social Interactions Through Mobile Phones

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Equipment of mobile phones with various kinds of sensors is transforming these devices from mere capabilities of voice and internet access to devices capable of sensing a number of phenomena pertaining to their users. In this paper we make use of these capabilities of phones to detect social interactions between people and analyze social context by using embedded sensors found in typical smart phones. Work carried out in this area has typically used dedicated hardware to establish social interactions, and we contend on the suitability of mobile phone, since additional devices that user is not familiar with influence natural user behavior and thus their social interaction patterns. Our work shows that two parameters that can be detected through mobile phone sensing, namely interpersonal distance and relative body orientation, provide a solid basis for inferring social interactions. We describe how these factors are acquired using smart phones and describe our analysis. The experiments demonstrate that we can recognize not only whether a social interaction is taking place, but also the type of social interaction, distinguishing between formal and informal social settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eagle NN (2005) “Machine perception and learning of complex social systems,” Massachusetts Institute of Technology

  2. Eagle N, (Sandy) Pentland A (2005) Reality mining: sensing complex social systems. Pers Ubiquit Comput 10(4):255–268

    Article  Google Scholar 

  3. Do TMT, Gatica-Perez D “Contextual grouping: discovering real-life interaction types from longitudinal Bluetooth data,” infoscience.epfl.ch

  4. Wyatt D, Choudhury T, Bilmes J (2011) “Inferring colocation and conversation networks from privacy-sensitive audio with implications for computational social science.” ACM Transactions on Intelligent Systems and Technology (TIST) 2(1)

  5. Cristani M, Pesarin A, Vinciarelli A (2011) “Look at who’s talking: voice activity detection by automated gesture analysis,” in Workshop on Interactive Human Behavior Analysis in Open or Public Spaces

  6. Eagle N, (Sandy) Pentland A (2005) Reality mining: sensing complex social systems. Pers Ubiquit Comput 10(4):255–268

    Article  Google Scholar 

  7. Hidalgo CA, Rodriguez-Sickert C (2007) The dynamics of a mobile phone network. Physica A: Stat Mech Appl 387(12):3017–3024

    Article  Google Scholar 

  8. Raento M, Oulasvirta A, Petit R, Toivonen H (2005) ContextPhone: a prototyping platform for context-aware mobile applications. IEEE Pervasive Comput 4(2):51–59

    Article  Google Scholar 

  9. Mardenfeld S, Boston D, Pan SJ, Jones Q, Iamntichi A, Borcea C (2010) “GDC: Group Discovery using Co-location traces,” 2010 IEEE Second International Conference on Social Computing, pp. 641–648

  10. Do TMT, Gatica-Perez D (2011) “GroupUs: Smartphone proximity data and human interaction type mining,” in 5th annual International Symposium on Wearable Computers, no. 2

  11. Banerjee N, Agarwal S, Bahl P, Chandra R, Wolman A, Corner M (2010) “Virtual compass: relative positioning to sense mobile social interactions,” Pervasive Computing, pp. 1–21

  12. Lane ND et al (2010) “BeWell: A smartphone application to monitor, model and promote wellbeing,” in 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth2011)

  13. Bhagwat P, Raman B, Sanghi D (2004) Turning 802.11 inside-out. ACM SIGCOMM Comput Commun Rev 34(1):33

    Article  Google Scholar 

  14. Matic A, Papliatseyeu A, Osmani V, Mayora-Ibarra O (2010) “Tuning to your position: FM radio based indoor localization with spontaneous recalibration,” 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 153–161, Mar

  15. Groh G, Lehmann A, Reimers J, Frieß MR, Schwarz L (2010) “Detecting social situations from interaction geometry,” in IEEE International Conference on Social Computing/IEEE International Conference on Privacy, Security, Risk and Trust

  16. Shi Y, Shi Y, Liu J (2011) “A rotation based method for detecting on-body positions of mobile devices,” in Proceedings of the 13th International Conference on Ubiquitous Computing

  17. Hall E (1966) The hidden dimnesion. Double Day Anchor Books, New York

    Google Scholar 

  18. Gatica-Perez D (2009) Automatic nonverbal analysis of social interaction in small groups: a review. Image Vis Comput 27(12):1775–1787

    Article  Google Scholar 

  19. Groh G, Lehmann A, Souza MD (2011) “Mobile Detection of Social Situations with Turn Taking Patterns,” in WAC2011

  20. Allen TJ (2000) “Architecture and communication among product development engineers,” Proceedings of the 2000 IEEE Engineering Management Society, vol. 49, no. 2. UNIVERSITY OF CALIFORNIA, p. 153

  21. Fish RS, Root RW, Chalfonte BL (1990) “Informal communication in organizations: Form, function, and technology,” in Human reactions to technology: Claremont symposium on applied social psychology

  22. Whittaker S, Frohlich D, Daly-Jones O (1994) “Informal workplace communication: What is it like and how might we support it?,” in Proceedings of the SIGCHI conference on Human factors in computing systems: celebrating interdependence, pp. 131–137

  23. Aalbers R, Koppius O, Dolfsma W (2006) “On and off the beaten path: Transferring knowledge through formal and informal networks,” CIRCLE Electronic Working Paper Series

  24. Fischbach K, Gloor PA, Schoder D (2008) Analysis of informal communication networks – a case study. Bus Inf Syst Eng 1(2):140–149

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Iacopo Carreras and Piret Saar for their assistance and development of the mobile phone application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Matic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matic, A., Osmani, V. & Mayora-Ibarra, O. Analysis of Social Interactions Through Mobile Phones. Mobile Netw Appl 17, 808–819 (2012). https://doi.org/10.1007/s11036-012-0400-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-012-0400-4

Keywords