[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Mobility-aware Management of Internet Connectivity in Always Best Served Wireless Scenarios

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

The widespread availability of portable devices with multiple wireless interfaces, e.g., IEEE 802.11, WiMAX, Bluetooth, and/or UMTS, is leveraging the potential of novel supports to seamlessly and automatically select the proper connectivity technology to exploit at any time for any node and any running application. That selection should be context-dependent and take into account several aspects, at very different abstraction layers, from application-specific bandwidth requirements to expected client mobility, from user preferences to energy consumption. We claim the suitability of mobility-aware middlewares to relieve the application logic from the burden of determining the most suitable interface and connectivity provider for each client/application at service provisioning time. In particular, the paper motivates the need for novel context indicators, e.g., client/connector relative mobility, and describes effective lightweight solutions to estimate them flexibly, depending on dynamically introduced evaluation metrics. The paper presents primary architecture and implementation guidelines to build such a novel middleware solution. The proposed middleware has been experimentally validated and the reported performance results demonstrate the feasibility of the approach: it achieves accurate estimations of node mobility and consequently performs connection establishment/selection with very limited overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. ETSI (2001) Requirements and architectures for interworking between HIPERLAN/3 and 3rd generation cellular systems. Tech. rep. ETSI TR 101:957

  2. Skehill R, Barry M, Kent W, O’Callaghan M, Gawley N, McGrath S (2007) The common RRM approach to admission control for converged heterogeneous wireless networks. IEEE Wirel Commun 14(2):48–56 doi:10.1109/MWC.2007.358964

    Article  Google Scholar 

  3. 3GPP (2002) Feasibility study on 3GPP system to WLAN interworking. Tech. rep. 3GPP TR 22.934 v1.2.0

  4. Chen J-C, Lin H-W (2005) A gateway approach to mobility integration of GPRS and wireless LANs. IEEE Wirel Commun 12(2):86–95 doi:10.1109/MWC.2005.1421932

    Article  Google Scholar 

  5. Buddhikot MM, Chandranmenon G, Han S, Lee Y-W, Miller S, Salgarelli L (2003) Design and implementation of a WLAN/cdma2000 interworking architecture. IEEE Commun Mag 41(11):90–100 doi:10.1109/MCOM.2003.1244928

    Article  Google Scholar 

  6. Bernaschi M, Cacace F, Iannello G, Za S, Pescape A (2005) Seamless internetworking of WLANs and cellular networks: architecture and performance issues in a mobile IPv6 scenario. IEEE Wirel Commun 12(3):73–80 doi:10.1109/MWC.2005.1452857

    Article  Google Scholar 

  7. Lera A, Molinaro A, Polito S, Ruggeri G (2005) End-to-end QoS provisioning in 4G with mobile hotspots. IEEE Netw 19(5):26–34 doi:10.1109/MNET.2005.1509949

    Article  Google Scholar 

  8. Salkintzis AK, Fors C, Pazhyannur R (2002) WLAN-GPRS integration for next-generation mobile data networks. IEEE Wirel Commun 9(5):112–124 doi:10.1109/MWC.2002.1043861

    Article  Google Scholar 

  9. Stemm M, Katz RH (1998) Vertical handoffs in wireless overlay networks. Mob Netw Applications (Baltzer) 3:335–350 (Dec) doi:10.1023/A:1019197320544

    Article  Google Scholar 

  10. Bing H, He C, Jiang L (2003) Performance analysis of vertical handover in a UMTS-WLAN integrated network. 14th IEEE Personal, Indoor and Mobile Radio Communications, Beijing, China, Sept. 2003, pp 187–191

  11. Hou J, O’Brien DC (2006) Vertical handover-decision-making algorithm using fuzzy logic for the integrated radio-and-OW system. IEEE Trans Wirel Commun 5(1):176–185 doi:10.1109/TWC.2006.1576541

    Article  Google Scholar 

  12. Song W, Jiang H, Zhuang W, Shen X (2005) Resource management for QoS support in cellular/WLAN interworking. IEEE Netw 19(5):12–18 doi:10.1109/MNET.2005.1509947

    Article  Google Scholar 

  13. Pack S, Shen X, Mark JW, Pan J (2007) Mobility management in mobile hotspots with heterogeneous multihop wireless links. IEEE Commun Mag 45(9):106–112 doi:10.1109/MCOM.2007.4342864

    Article  Google Scholar 

  14. Politis C, Chew KA, Akhtar N, Georgiades M, Tafazolli R, Dagiuklas T (2004) Hybrid multilayer mobility management with AAA context transfer capabilities for all-IP networks. IEEE Wirel Commun 11(4):76–88 doi:10.1109/MWC.2004.1325894

    Article  Google Scholar 

  15. Wang Q, Abu-Rgheff A (2006) Mobility management architectures based on joint mobile IP and SIP protocols. IEEE Wirel Commun 13(6):68–76 doi:10.1109/MWC.2006.275201

    Article  Google Scholar 

  16. Wei Lee C, Chen LM, Chen MC, Sun YS (2005) A frame-work of handoffs in wireless overlay networks based on mobile IPv6. IEEE J Sel Areas Commun 23(11):2118–2128 doi:10.1109/JSAC.2005.856833

    Article  Google Scholar 

  17. Nursimloo DS, Chan HA (2005) Integrating fast mobile IPv6 and SIP in 4G network for real-time mobility. 13th IEEE Int. Conf. Networks, Kuala Lumpur, Malaysia, Nov. 2005, pp 917–922

  18. Wei Wu N, Banerjee KB, Das SK (2005) SIP-based vertical handoff between WWANs and WLANs. IEEE Wirel Commun 12(3):66–72 doi:10.1109/MWC.2005.1452856

    Article  Google Scholar 

  19. Sarikaya B (2006) Home agent placement and IP address management for integrating WLANs with cellular networks. IEEE Wirel Commun 13(6):77–86 doi:10.1109/MWC.2006.275202

    Article  Google Scholar 

  20. Ylitalo J, Jokikyyny T, Kauppinen T, Tuominen AJ, Laine J (2003) Dynamic network interface selection in multihomed mobile hosts. 36th Hawaii Int. Conf. System Sciences, Hawaii, HI, Jan. 2003

  21. Fracchia R, Casetti C, Chiasserini CF, Meo M (2007) WiSE: best-path selection in wireless multihoming environments. IEEE Trans Mob Comput 6(10):1130–1141 doi:10.1109/TMC.2007.1027

    Article  Google Scholar 

  22. Chebrolu K, Rao RR (2006) Bandwidth aggregation for real-time applications in heterogeneous wireless networks. IEEE Trans Mob Comput 5(4):388–403 doi:10.1109/TMC.2006.1599407

    Article  Google Scholar 

  23. Kristiansson J, Parnes P (2006) An application-layer approach to seamless mobile multimedia communication. IEEE eTrans Netw Serv Manage 3(1):33–42 Jan

    Article  Google Scholar 

  24. Xing B, Venkatasubramanian N (2005) Multi-constraint dynamic access selection in always best connected networks. 2nd Int. Conf. Mobile and Ubiquitous Systems: Networking and Services, San Diego, CA, July 2005, pp 56–64

  25. Yi Pan M, Lee JBK, Suda T (2004) An end-to-end multi-path smooth handoff scheme for stream media. IEEE J Sel Areas Commun 22(4):653–663 doi:10.1109/JSAC.2004.825998

    Article  Google Scholar 

  26. Perkins C (2002) IP Mobility Support for IPv4. Internet proposed standard RFC3344, Aug

  27. Johnson DB, Perkins C. Route optimization in mobile IP. Internet draft draft-ietf-mobileip-optim-11

  28. Wei H-Y, Gitlin RD (2004) Two-hop-relay architecture for next-generation WWAN/WLAN integration. IEEE Wirel Commun 11(2):24–30 doi:10.1109/MWC.2004.1295734

    Article  Google Scholar 

  29. Le L, Hossain E (2007) Multihop cellular networks: potential gains, research challenges, and a resource allocation framework. IEEE Commun Mag 45(9):66–73 doi:10.1109/MCOM.2007.4342859

    Article  Google Scholar 

  30. Lam PP, Liew SC (2007) Nested network mobility on the multihop cellular network. IEEE Commun Mag 45(9):100–104 doi:10.1109/MCOM.2007.4342863

    Article  Google Scholar 

  31. Luo H, Ramjee R, Sinha P, Li LE, Lu S (2003) UCAN: a unified cellular and ad-hoc network architecture. 9th Int. Conf. Mobile Computing and Networking, San Diego, CA, Sept. 2003, pp 353–367

  32. Frattasi S, Fathi H, Gimmler A, Fitzek FHP, Prasad R (2006) Designing socially robust 4G wireless services. IEEE Technol Soc Mag 25(2):51–64 doi:10.1109/MTAS.2006.1649030

    Article  Google Scholar 

  33. Kang S-S, Mutka MW (2005) A mobile peer-to-peer approach for multimedia content sharing using 3G/WLAN dual mode channels. Wiley J Wirel Commun Mob Comput 5(6):633–645 doi:10.1002/wcm.332

    Article  Google Scholar 

  34. Fu C, Khendek F, Glitho R (2006) Signaling for multimedia conferencing in 4G: the case of integrated 3G/MANETs. IEEE Commun Mag 44(8):90–99 doi:10.1109/MCOM.2006.1678115

    Article  Google Scholar 

  35. Ghini V, Salomoni P, Pau G (2005) Always-best-served music distribution for nomadic users over heterogeneous net-works. IEEE Commun Mag 43(5):69–74 doi:10.1109/MCOM.2005.1453425

    Article  Google Scholar 

  36. Bellavista P, Corradi A, Giannelli C (2007) Mobility-aware connectivity for seamless multimedia delivery in the heterogeneous wireless internet. 2nd Work. on multiMedia Applications over Wireless Networks (MediaWiN 07), Aveiro, Portugal, July 2007

  37. Shenoy N, Montalvo R (2005) A framework for seamless roaming across cellular and wireless local area networks. IEEE Wirel Commun 12(3):50–57 doi:10.1109/MWC.2005.1452854

    Article  Google Scholar 

  38. Bellavista P, Corradi A, Giannelli C (2005) Mobile proxies for proactive buffering in wireless internet multimedia streaming. IEEE Int. Conf. Distributed Computing Systems (ICDCS) Workshops, pp. 297–304, June 2005

  39. Bellavista P, Corradi A, Giannelli C (2005) Adaptive buffering based on handoff prediction for wireless internet continuous services. Int. Conf. High Performance Computing and Communications (HPCC). LNCS 3726:1021–1032

    Google Scholar 

  40. Bellavista P, Corradi A, Giannelli C (2008) A layered infrastructure for mobility-aware best connectivity in the heterogeneous wireless internet. 1st Int. Conf. on MOBILe Wireless MiddleWARE, Operating Systems, and Applications (Mobilware 2008), Innsbruck, Austria, Feb. 2008

  41. Mobility-Aware Connectivity Project. http://lia.deis.unibo.it/Research/MAC/

  42. Ferro E, Potorti F (2005) Bluetooth and Wi-Fi wireless protocols: a survey and a comparison. IEEE Wirel Commun 12(1):12–26 doi:10.1109/MWC.2005.1404569

    Article  Google Scholar 

  43. Peterson BS, Baldwin RO, Kharoufeh JP (2006) Bluetooth inquiry time characterization and selection. IEEE Trans Mob Comput 5(9):1173–1187 doi:10.1109/TMC.2006.125

    Article  Google Scholar 

  44. Bellavista P, Corradi A, Foschini L (2007) Context-aware handoff middleware for transparent service continuity in wireless networks. Elsevier Pervasive Mob Comput J 3(4):439–466 doi:10.1016/j.pmcj.2007.04.006

    Article  Google Scholar 

Download references

Acknowledgments

Work supported by the MIUR FIRB TOCAI and the CNR Strategic IS-MANET projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Bellavista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellavista, P., Corradi, A. & Giannelli, C. Mobility-aware Management of Internet Connectivity in Always Best Served Wireless Scenarios. Mobile Netw Appl 14, 18–34 (2009). https://doi.org/10.1007/s11036-008-0106-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-008-0106-9

Keywords

Navigation