Abstract
Naringenin, a flavanone mainly derived from grapes and citrus fruits, has been reported to exhibit cardioprotective effects. Accumulating evidence has confirmed that endoplasmic reticulum (ER) stress-mediated apoptosis participates in the process of myocardial ischemia/reperfusion injury and inhibiting ER stress is a potential therapeutic target/strategy in preventing cardiovascular diseases. Herein, the current study was designed to investigate whether naringenin protects H9c2 myocardial cells against hypoxia/reoxygenation (H/R) injury via attenuating ER stress or ER stress-mediated apoptosis. Our results showed that naringenin treatment resulted in obvious increases in the viability of H9c2 cells and the expression of Bcl-2 (anti-apoptotic protein), and decreases in the morphological changes of apoptotic cells, the activity of caspase-3 and the expression of Bax (pro-apoptotic protein) in H/R-treated H9c2 cells, implying the protective effects of naringenin against H/R-induced injury. In addition, naringenin also significantly reversed H/R-induced ER stress as evidenced by the up-regulation of Glucose-regulated protein 78, C/EBP homologous protein and Cleaved caspase-12 proteins. Meanwhile, naringenin remarkably reversed H/R-induced the increases in the expression of cleaved activating transcription factor 6 (ATF6) and phosphorylation levels of phospho-extracellular regulated protein kinases (PERK) and inositol-requiring enzyme-1α (IRE1α) in H9c2 cells. Finally, we found that ATF6 siRNA, PERK siRNA or IRE1α siRNA abolished H/R-induced cytotoxicity and apoptosis in H9c2 cells. In conclusion, these results confirmed that ER stress-mediated apoptosis contributes to the protection effects of naringenin against H/R injury, which is potentially involved in ATF6, IRE1α and PERK signaling activation.
Similar content being viewed by others
References
Jennings RB (2013) Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res 113:428–438. doi:10.1161/CIRCRESAHA.113.300987
Bassand JP, Danchin N, Filippatos G, Gitt A, Hamm C, Silber S, Tubaro M, Weidinger F (2005) Implementation of reperfusion therapy in acute myocardial infarction. A policy statement from the European society of cardiology. Eur Heart J 26:2733–2741. doi:10.1093/eurheartj/ehi673
Tehrani DM, Seto AH (2013) Third universal definition of myocardial infarction: update, caveats, differential diagnoses. Cleve Clin J Med 80:777–786. doi:10.3949/ccjm.80a.12158
Yang Q, He GW, Underwood MJ, Yu CM (2016) Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. Am J Transl Res 8:765–777
Chi HJ, Chen ML, Yang XC, Lin XM, Sun H, Zhao WS, Qi D, Cai J, Dong JL (2016) Progress in therapies for myocardial ischemia reperfusion injury. Curr Drug Targets
Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32:1552–1562. doi:10.1161/ATVBAHA.111.224915
Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628. doi:10.1172/JCI117504
Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA, Glembotski CC (2006) Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res 99:275–282. doi:10.1161/01.RES.0000233317.70421.03
Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664. doi:10.1172/JCI26373
Hosoi T, Ozawa K (2016) Possible pharmacological approach targeting endoplasmic reticulum stress to ameliorate leptin resistance in obesity. Front Endocrinol 7:59. doi:10.3389/fendo.2016.00059
Cimellaro A, Perticone M, Fiorentino TV, Sciacqua A, Hribal ML (2016) Role of endoplasmic reticulum stress in endothelial dysfunction. Nutr Metab Cardiovasc Dis. doi:10.1016/j.numecd.2016.05.008
Munshi S, Dahl R (2016) Cytoprotective small molecule modulators of endoplasmic reticulum stress. Bioorg Med Chem 24:2382–2388. doi:10.1016/j.bmc.2016.03.045
Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12:703–719. doi:10.1038/nrd3976
Zhang N, Bi C, Liu L, Dou Y, Tang S, Pang W, Deng H, Song D (2016) IMB-6G, a novel N-substituted sophoridinic acid derivative, induces endoplasmic reticulum stress-mediated apoptosis via activation of IRE1alpha and PERK signaling. Oncotarget 7:23860–23873. doi:10.18632/oncotarget.8184
Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15:481–490. doi:10.1038/ncb2738
Ghosh AP, Klocke BJ, Ballestas ME, Roth KA (2012) CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS ONE 7:e39586. doi:10.1371/journal.pone.0039586
Liu Z, Zhao N, Zhu H, Zhu S, Pan S, Xu J, Zhang X, Zhang Y, Wang J (2015) Circulating interleukin-1beta promotes endoplasmic reticulum stress-induced myocytes apoptosis in diabetic cardiomyopathy via interleukin-1 receptor-associated kinase-2. Cardiovasc Diabetol 14:125. doi:10.1186/s12933-015-0288-y
Wu X, Qi YF, Chang JR, Lu WW, Zhang JS, Wang SP, Cheng SJ, Zhang M, Fan Q, Lv Y, Zhu H, Xin MK, Lv Y, Liu JH (2015) Possible role of fibroblast growth factor 21 on atherosclerosis via amelioration of endoplasmic reticulum stress-mediated apoptosis in apoE(-/-) mice. Heart Vessels 30:657–668. doi:10.1007/s00380-014-0557-9
Wu N, Zhang X, Jia P, Jia D (2015) Hypercholesterolemia aggravates myocardial ischemia reperfusion injury via activating endoplasmic reticulum stress-mediated apoptosis. Exp Mol Pathol 99:449–454. doi:10.1016/j.yexmp.2015.08.010
Banjerdpongchai R, Wudtiwai B, Khaw-On P, Rachakhom W, Duangnil N, Kongtawelert P (2016) Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumour Biol 37:227–237. doi:10.1007/s13277-015-3774-7
Al-Rejaie SS, Aleisa AM, Abuohashish HM, Parmar MY, Ola MS, Al-Hosaini AA, Ahmed MM (2015) Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol Res 37:924–933. doi:10.1179/1743132815Y.0000000079
Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Vignoli JA, Barbosa DS, Baracat MM, Georgetti SR, Verri WA Jr, Casagrande R (2015) Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice. J Nat Prod 78:1647–1655. doi:10.1021/acs.jnatprod.5b00198
Chtourou Y, Slima AB, Makni M, Gdoura R, Fetoui H (2015) Naringenin protects cardiac hypercholesterolemia-induced oxidative stress and subsequent necroptosis in rats. Pharmacol Rep 67:1090–1097. doi:10.1016/j.pharep.2015.04.002
Orhan IE, Nabavi SF, Daglia M, Tenore GC, Mansouri K, Nabavi SM (2015) Naringenin and atherosclerosis: a review of literature. Curr Pharm Biotechnol 16:245–251
Testai L, Martelli A, Cristofaro M, Breschi MC, Calderone V (2013) Cardioprotective effects of different flavonoids against myocardial ischaemia/reperfusion injury in langendorff-perfused rat hearts. J Pharm Pharmacol 65:750–756. doi:10.1111/jphp.12032
Kara S, Gencer B, Karaca T, Tufan HA, Arikan S, Ersan I, Karaboga I, Hanci V (2014) Protective effect of hesperetin and naringenin against apoptosis in ischemia/reperfusion-induced retinal injury in rats. Sci World J 2014:797824. doi:10.1155/2014/797824
Kapoor R, Rizvi F, Kakkar P (2013) Naringenin prevents high glucose-induced mitochondria-mediated apoptosis involving AIF, Endo-G and caspases. Apoptosis 18:9–27. doi:10.1007/s10495-012-0781-7
Karuppagounder V, Arumugam S, Thandavarayan RA, Pitchaimani V, Sreedhar R, Afrin R, Harima M, Suzuki H, Suzuki K, Nakamura M, Ueno K, Watanabe K (2015) Naringenin ameliorates daunorubicin induced nephrotoxicity by mitigating AT1R, ERK1/2-NFkappaB p65 mediated inflammation. Int Immunopharmacol 28:154–159. doi:10.1016/j.intimp.2015.05.050
Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177. doi:10.1016/j.toxlet.2005.07.001
Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63
Eleftheriadis T, Pissas G, Liakopoulos V, Stefanidis I (2016) Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Front Immunol 7:279. doi:10.3389/fimmu.2016.00279
Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190. doi:10.1038/ncb0311-184
Hassan M, Selimovic D, Hannig M, Haikel Y, Brodell RT, Megahed M (2015) Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: significance for melanoma treatment. World J Exp Med 5:206–217. doi:10.5493/wjem.v5.i4.206
Shen ZY, Sun Q, Xia ZY, Meng QT, Lei SQ, Zhao B, Tang LH, Xue R, Chen R (2016) Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose. Int J Mol Med. doi:10.3892/ijmm.2016.2680
Chen L, Chen M, Du J, Wan L, Zhang L, Gu E (2016) Hyperglycemia attenuates remifentanil postconditioning-induced cardioprotection against hypoxia/reoxygenation injury in H9c2 cardiomyoblasts. J Surg Res 203:483–490. doi:10.1016/j.jss.2016.03.052
Zhang Q, Shang M, Zhang M, Wang Y, Chen Y, Wu Y, Liu M, Song J, Liu Y (2016) Microvesicles derived from hypoxia/reoxygenation-treated human umbilical vein endothelial cells promote apoptosis and oxidative stress in H9c2 cardiomyocytes. BMC Cell Biol 17:25. doi:10.1186/s12860-016-0100-1
Zhang C, Liu X, Zhang C, Li J, Guo W, Yan D, Yang C, Zhao J, Wu X, Shi J (2016) Phosphorylated eEF2 is SUMOylated and induces cardiomyocyte apoptosis during myocardial ischemia reperfusion. J Cardiol. doi:10.1016/j.jjcc.2016.05.020
Chen J, Mo H, Guo R, You Q, Huang R, Wu K (2014) Inhibition of the leptin-induced activation of the p38 MAPK pathway contributes to the protective effects of naringin against high glucose-induced injury in H9c2 cardiac cells. Int J Mol Med 33:605–612. doi:10.3892/ijmm.2014.1614
Selvaraj P, Pugalendi KV (2010) Hesperidin, a flavanone glycoside, on lipid peroxidation and antioxidant status in experimental myocardial ischemic rats. Redox Rep 15:217–223. doi:10.1179/135100010X12826446921509
Zhang N, Yang Z, Yuan Y, Li F, Liu Y, Ma Z, Liao H, Bian Z, Zhang Y, Zhou H, Deng W, Zhou M, Tang Q (2015) Naringenin attenuates pressure overload-induced cardiac hypertrophy. Exp Ther Med 10:2206–2212. doi:10.3892/etm.2015.2816
Middleton E Jr, Kandaswami C (1992) Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 43:1167–1179
Kiraz Y, Adan A, Kartal Yandim M, Baran Y (2016) Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. doi:10.1007/s13277-016-5035-9
Qin W, Ren B, Wang S, Liang S, He B, Shi X, Wang L, Liang J, Wu F (2016) Apigenin and naringenin ameliorate PKCbetaII-associated endothelial dysfunction via regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose. Vascul Pharmacol. doi:10.1016/j.vph.2016.07.006
Wu H, Tang Q, Yang J, Ding J, Ye M, Dong W (2014) Atorvastatin ameliorates myocardial ischemia/reperfusion injury through attenuation of endoplasmic reticulum stress-induced apoptosis. Int J Clin Exp Med 7:4915–4923
Wang Z, Wang Y, Ye J, Lu X, Cheng Y, Xiang L, Chen L, Feng W, Shi H, Yu X, Lin L, Zhang H, Xiao J, Li X (2015) bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3 K/Akt/ERK1/2 pathway. J Cell Mol Med 19:595–607. doi:10.1111/jcmm.12346
Teng X, Qi YF, Tang CS (2009) Endoplasmic reticulum stress and heart diseases. Sheng Li Ke Xue Jin Zhan 40:106–110
Zhao Y, Xu L, Qiao Z, Gao L, Ding S, Ying X, Su Y, Lin N, He B, Pu J (2016) YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor alpha. Sci Rep 6:23025. doi:10.1038/srep23025
Zhao GL, Yu LM, Gao WL, Duan WX, Jiang B, Liu XD, Zhang B, Liu ZH, Zhai ME, Jin ZX, Yu SQ, Wang Y (2016) Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin 37:354–367. doi:10.1038/aps.2015.136
Zhang GG, Cai HQ, Li YH, Sui YB, Zhang JS, Chang JR, Ning M, Wu Y, Tang CS, Qi YF, Yin XH (2013) Ghrelin protects heart against ERS-induced injury and apoptosis by activating AMP-activated protein kinase. Peptides 48:156–165. doi:10.1016/j.peptides.2013.08.015
Tao J, Zhu W, Li Y, Xin P, Li J, Liu M, Li J, Redington AN, Wei M (2011) Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am J Physiol Heart Circ Physiol 301:H1471–H1486. doi:10.1152/ajpheart.00097.2011
Miyazaki Y, Kaikita K, Endo M, Horio E, Miura M, Tsujita K, Hokimoto S, Yamamuro M, Iwawaki T, Gotoh T, Ogawa H, Oike Y (2011) C/EBP homologous protein deficiency attenuates myocardial reperfusion injury by inhibiting myocardial apoptosis and inflammation. Arterioscler Thromb Vasc Biol 31:1124–1132. doi:10.1161/ATVBAHA.111.224519
Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. doi:10.1038/nrm2199
Yu L, Li B, Zhang M, Jin Z, Duan W, Zhao G, Yang Y, Liu Z, Chen W, Wang S, Yang J, Yi D, Liu J, Yu S (2016) Melatonin reduces PERK-eIF2alpha-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia-reperfusion injury: role of RISK and SAFE pathways interaction. Apoptosis 21:809–824. doi:10.1007/s10495-016-1246-1
Gupta S, Deepti A, Deegan S, Lisbona F, Hetz C, Samali A (2010) HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biol 8:e1000410. doi:10.1371/journal.pbio.1000410
Yu Y, Sun G, Luo Y, Wang M, Chen R, Zhang J, Ai Q, Xing N, Sun X (2016) Cardioprotective effects of Notoginsenoside R1 against ischemia/reperfusion injuries by regulating oxidative stress- and endoplasmic reticulum stress- related signaling pathways. Sci Rep 6:21730. doi:10.1038/srep21730
Acknowledgments
The present study was supported by the National Natural Science Foundation of China (No. 81470500 and 81600240), the Distinguished Young Scholar Cultivation Project of Xijing Hospital (XJZT14J03), and National Natural Science Foundation of China (No.81600295).
Author information
Authors and Affiliations
Corresponding author
Additional information
Jia-you Tang and Ping Jin have contributed equally to this work.
Rights and permissions
About this article
Cite this article
Tang, JY., Jin, P., He, Q. et al. Naringenin ameliorates hypoxia/reoxygenation-induced endoplasmic reticulum stress-mediated apoptosis in H9c2 myocardial cells: involvement in ATF6, IRE1α and PERK signaling activation. Mol Cell Biochem 424, 111–122 (2017). https://doi.org/10.1007/s11010-016-2848-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11010-016-2848-1