[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Anillin (ANLN), an actin-binding protein, is required for cytokinesis. Recently, ANLN has been identified as a biomarker in diverse human cancers; however, the precise role of ANLN in breast cancer remains unclear. In this study, we firstly detected the expression of ANLN in 71 patients with breast cancer by immunohistochemistry, and found ANLN was highly expressed in breast cancer tissues. To evaluate the function of ANLN in breast cancer cells, we employed lentivirus-mediated RNA interference to knock down ANLN expression in two human breast cancer cell lines, MDA-MB-231, and ZR-75-30. Knockdown of ANLN remarkably inhibited the proliferation rate and colony formation ability of both breast cancer cell lines. Moreover, flow cytometry analysis showed that depletion of ANLN in MDA-MB-231 cells blocked the cell cycle progression, with more cells delayed at G2/M phase, due to phosphorylation of Cdc2 and suppression of Cyclin D1. Furthermore, knockdown of ANLN strongly suppressed the migration of breast cancer cells, strengthening the evidence that ANLN could be involved in breast cancer progression. Our results may suggest ANLN as a potential target candidate in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Field CM, Alberts BM (1995) Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J Cell Biol 131:165–178

    Article  CAS  PubMed  Google Scholar 

  2. Zhang L, Maddox AS (2010) Anillin. Curr Biol 20:R135–R136. doi:10.1016/j.cub.2009.12.017

    Article  CAS  PubMed  Google Scholar 

  3. Piekny AJ, Maddox AS (2010) The myriad roles of Anillin during cytokinesis. Semin Cell Dev Biol 21:881–891. doi:10.1016/j.semcdb.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  4. Hickson GR, O’Farrell PH (2008) Anillin: a pivotal organizer of the cytokinetic machinery. Biochem Soc Trans 36:439–441. doi:10.1042/BST0360439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sisson JC, Field C, Ventura R, Royou A, Sullivan W (2000) Lava lamp, a novel peripheral golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol 151:905–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Straight AF, Field CM, Mitchison TJ (2005) Anillin binds nonmuscle myosin II and regulates the contractile ring. Mol Biol Cell 16:193–201. doi:10.1091/mbc.E04-08-0758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Oegema K, Savoian MS, Mitchison TJ, Field CM (2000) Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J Cell Biol 150:539–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Self- and actin-templated assembly of Mammalian septins. Dev Cell 3:791–802

    Article  CAS  PubMed  Google Scholar 

  9. Piekny AJ, Glotzer M (2008) Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr Biol 18:30–36. doi:10.1016/j.cub.2007.11.068

    Article  CAS  PubMed  Google Scholar 

  10. D’Avino PP, Takeda T, Capalbo L, Zhang W, Lilley KS, Laue ED, Glover DM (2008) Interaction between anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site. J Cell Sci 121:1151–1158. doi:10.1242/jcs.026716

    Article  PubMed  Google Scholar 

  11. Gregory SL, Ebrahimi S, Milverton J, Jones WM, Bejsovec A, Saint R (2008) Cell division requires a direct link between microtubule-bound RacGAP and anillin in the contractile ring. Curr Biol 18:25–29. doi:10.1016/j.cub.2007.11.050

    Article  CAS  PubMed  Google Scholar 

  12. Hall PA, Todd CB, Hyland PL, McDade SS, Grabsch H, Dattani M, Hillan KJ, Russell SE (2005) The septin-binding protein anillin is overexpressed in diverse human tumors. Clin Cancer Res 11:6780–6786. doi:10.1158/1078-0432.ccr-05-0997

    Article  CAS  PubMed  Google Scholar 

  13. Olakowski M, Tyszkiewicz T, Jarzab M, Krol R, Oczko-Wojciechowska M, Kowalska M, Kowal M, Gala GM, Kajor M, Lange D, Chmielik E, Gubala E, Lampe P, Jarzab B (2009) NBL1 and anillin (ANLN) genes over-expression in pancreatic carcinoma. Folia Histochem Cytobiol 47:249–255. doi:10.2478/v10042-009-0031-1

    Article  PubMed  Google Scholar 

  14. Suzuki C, Daigo Y, Ishikawa N, Kato T, Hayama S, Ito T, Tsuchiya E, Nakamura Y (2005) ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res 65:11314–11325. doi:10.1158/0008-5472.CAN-05-1507

    Article  CAS  PubMed  Google Scholar 

  15. den Hollander P, Savage MI, Brown PH (2013) Targeted Therapy for Breast Cancer Prevention. Front Oncol 3:250. doi:10.3389/fonc.2013.00250

    Google Scholar 

  16. Labrie F (2007) Drug insight: breast cancer prevention and tissue-targeted hormone replacement therapy. Nat Clin Pract Endocrinol Metab 3:584–593. doi:10.1038/ncpendmet0559

    Article  CAS  PubMed  Google Scholar 

  17. Pc OL, Penny SA, Dolan RT, Kelly CM, Madden SF, Rexhepaj E, Brennan DJ, McCann AH, Ponten F, Uhlen M, Zagozdzon R, Duffy MJ, Kell MR, Jirstrom K, Gallagher WM (2013) Systematic antibody generation and validation via tissue microarray technology leading to identification of a novel protein prognostic panel in breast cancer. BMC Cancer 13:175. doi:10.1186/1471-2407-13-175

    Article  Google Scholar 

  18. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  19. Bartosch B, Cosset FL (2004) Strategies for retargeted gene delivery using vectors derived from lentiviruses. Curr Gene Ther 4:427–443

    Article  CAS  PubMed  Google Scholar 

  20. Emeagi PU, Goyvaerts C, Maenhout S, Pen J, Thielemans K, Breckpot K (2013) Lentiviral vectors: a versatile tool to fight cancer. Curr Mol Med 13:602–625

    Article  CAS  PubMed  Google Scholar 

  21. Shimizu S, Seki N, Sugimoto T, Horiguchi S, Tanzawa H, Hanazawa T, Okamoto Y (2007) Identification of molecular targets in head and neck squamous cell carcinomas based on genome-wide gene expression profiling. Oncol Rep 18:1489–1497

    CAS  PubMed  Google Scholar 

  22. Skrzypski M, Jassem E, Taron M, Sanchez JJ, Mendez P, Rzyman W, Gulida G, Raz D, Jablons D, Provencio M, Massuti B, Chaib I, Perez-Roca L, Jassem J, Rosell R (2008) Three-gene expression signature predicts survival in early-stage squamous cell carcinoma of the lung. Clin Cancer Res 14:4794–4799. doi:10.1158/1078-0432.CCR-08-0576

    Article  CAS  PubMed  Google Scholar 

  23. Ronkainen H, Hirvikoski P, Kauppila S, Vaarala MH (2011) Anillin expression is a marker of favourable prognosis in patients with renal cell carcinoma. Oncol Rep 25:129–133

    CAS  PubMed  Google Scholar 

  24. Kim H, Kim K, Yu SJ, Jang ES, Yu J, Cho G, Yoon JH, Kim Y (2013) Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring. PLoS ONE 8:e63468. doi:10.1371/journal.pone.0063468

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hong J, Liu Z, Zhu H, Zhang X, Liang Y, Yao S, Wang F, Xie X, Zhang B, Tan T, Fu L, Nie J, Cheng C (2014) The tumor suppressive role of NUMB isoform 1 in esophageal squamous cell carcinoma. Oncotarget 5:5602–5614

    PubMed Central  PubMed  Google Scholar 

  26. Dong Y, Sui L, Sugimoto K, Tai Y, Tokuda M (2001) Cyclin D1-CDK4 complex, a possible critical factor for cell proliferation and prognosis in laryngeal squamous cell carcinomas. Int J Cancer 95:209–215

    Article  CAS  PubMed  Google Scholar 

  27. Zhong Z, Yeow WS, Zou C, Wassell R, Wang C, Pestell RG, Quong JN, Quong AA (2010) Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer Res 70:2105–2114. doi:10.1158/0008-5472.CAN-08-1108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the National Natural Science Foundation of China (81372842).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lunquan Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Supplementary material 2 (TIFF 552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Wang, Z., Shen, N. et al. Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer. Mol Cell Biochem 398, 11–19 (2015). https://doi.org/10.1007/s11010-014-2200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2200-6

Keywords

Navigation