Abstract
We prove the (strong) equivalence between two known n-norms on the space ℓ p of p-summable sequences (of real numbers). The first n-norm is derived from Gähler’s formula [3], while the second is due to Gunawan [7]. The equivalence is proved by using the properties of the volume of n-dimensional parallelepipeds in ℓ p.
Similar content being viewed by others
References
X. Y. Chen and M. M. Song, Characterizations on isometries in linear n-normed spaces, Nonlinear Anal., 72 (2010), 1895–1901.
S. Gähler, Lineare 2-normierte räume, Math. Nachr., 28 (1964), 1–43.
S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume. I, Math. Nachr., 40 (1969), 165–189.
S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume. II, Math. Nachr., 40 (1969), 229–264.
S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume. III, Math. Nachr., 41 (1970), 23–26.
S. M. Gozali, H. Gunawan and O. Neswan, On n-norms and bounded n-linear functionals in a Hilbert space, Ann. Funct. Anal., 1 (2010), 72–79.
H. Gunawan, The space of p-summable sequences and its natural n-norms, Bull. Austral. Math. Soc., 64 (2001), 137–147.
H. Gunawan, On n-inner products, n-norms, and the Cauchy-Schwarz inequality, Sci. Math. Japan, 55 (2002), 53–60.
H. Gunawan, A generalization of Bessel’s inequality and Parseval’s identity, Period. Math. Hungar., 44 (2002), 177–181.
H. Gunawan and Mashadi , On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631–639.
H. Gunawan, W. Setya-Budhi, Mashadi and S. Gemawati, On volume of n-dimensional parallelepipeds in ℓ p spaces, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 16 (2005), 48–54.
T. R. Kristianto, R. A. Wibawa-Kusumah and H. Gunawan, Equivalence relations of n-norms on a vector spaces, Mat. Vesnik, to appear.
R. Malčeski, The Ascoli-Mazur theorem for n-normed spaces, Mat. Bilten, 28 (2004), 35–44 (in Macedonian).
P. M. Miličić, On the Gram-Schmidt projection in normed spaces, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 4 (1993), 89–96.
A. Mutaqin and H. Gunawan, Equivalence of n-norms on the space of p-summable sequences, J. Indones. Math. Soc., 16 (2010), 39–49.
A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299–319.
C.-G. Park and T. M. Rassias, Isometries on linear n-normed spaces, JIPAM. J. Inequal. Pure Appl. Math., 7 (2006), Article 168, 7 pp.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Dénes Petz
Rights and permissions
About this article
Cite this article
Wibawa-Kusumah, R.A., Gunawan, H. Two equivalent n-norms on the space of p-summable sequences. Period Math Hung 67, 63–69 (2013). https://doi.org/10.1007/s10998-013-6129-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-013-6129-4