Abstract
Let \(G = C_{n_1 } \oplus \cdots \oplus C_{n_r }\) with 1 < n 1 | … | n r be a finite abelian group, d*(G) = n 1 +…+n r −r, and let d(G) denote the maximal length of a zerosum free sequence over G. Then d(G) ≥ d*(G), and the standing conjecture is that equality holds for G = C r n . We show that equality does not hold for C 2 ⊕ C r2n , where n ≥ 3 is odd and r ≥ 4. This gives new information on the structure of extremal zero-sum free sequences over C r2n .
Similar content being viewed by others
References
G. Bhowmik, I. Halupczok and J.-C. Schlage-Puchta, Zero-sum free sets with small sum-set, Math. Comp., 80 (2011), 2253–2258.
G. Bhowmik, I. Halupczok and J.-C. Schlage-Puchta, Inductive methods and zero-sum free sequences, Integers, 9 (2009), 515–536.
G. Bhowmik and J.-C. Schlage-Puchta, Davenport’s constant for groups of the form ℤ3 ⊕ ℤ3 ⊕ ℤ3d , Additive Combinatorics (A. Granville, M. B. Nathanson, and J. Solymosi, eds.), CRM Proceedings and Lecture Notes 43, American Mathematical Society, 2007, pp. 307–326.
Y. Edel, Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G), Des. Codes Cryptography, 47 (2007), 125–134.
Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin and L. Rackham, Zero-sum problems in finite abelian groups and affine caps, Q. J. Math., 58 (2007), 159–186.
C. Elsholtz, Lower bounds for multidimensional zero sums, Combinatorica, 24 (2004), 351–358.
M. Freeze and W. A. Schmid, Remarks on a generalization of the Davenport constant, Discrete Math., 310 (2010), 3373–3389.
W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Period. Math. Hung., 38 (1999), 179–211.
W. Gao and A. Geroldinger, Zero-sum problems and coverings by proper cosets, Eur. J. Comb., 24 (2003), 531–549.
W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math., 24 (2006), 337–369.
W. Gao, A. Geroldinger, and D.J. Grynkiewicz, Inverse zero-sum problems III, Acta Arith., 141 (2010), 103–152.
A. Geroldinger, Additive group theory and non-unique factorizations, Combi- natorial Number Theory and Additive Group Theory (A. Geroldinger and I. Ruzsa, eds.), Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1–86.
A. Geroldinger and D. J. Grynkiewicz, On the structure of minimal zero-sum sequences with maximal cross number, J. Combinatorics and Number Theory, 1:2 (2009), 9–26.
A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics 278, Chapman & Hall/CRC, 2006.
A. Geroldinger and R. Schneider, On Davenport’s constant, J. Comb. Theory Ser. A, 61 (1992), 147–152.
B. Girard, Inverse zero-sum problems and algebraic invariants, Acta Arith., 135 (2008), 231–246.
B. Girard, A new upper bound for the cross number of finite abelian groups, Isr. J. Math., 172 (2009), 253–278.
B. Girard, Inverse zero-sum problems in finite abelian p-groups, Colloq. Math., 120 (2010), 7–21.
O. Ordaz, A. Philipp, I. Santos and W. A. Schmid, On the Olson and the strong Davenport constants, J. Théor. Nombres Bordx., 23 (2011), 715–750.
C. Reiher, A proof of the theorem according to which every prime number possesses property B, J. London. Math. Soc., to appear.
S. Savchev and F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Math., 307 (2007), 2671–2679.
W. A. Schmid, The inverse problem associated to the Davenport constant for C 2 ⊕ C 2 ⊕ C 2n , and applications to the arithmetical characterization of class groups, Electron. J. Comb., 18 (2011), research paper 33.
W. A. Schmid, Inverse zero-sum problems II, Acta Arith., 143 (2010), 333–343.
D. Smertnig, On the Davenport constant and group algebras, Colloq. Math., 121 (2010), 179–193.
Zhi-Wei Sun, Zero-sum problems for abelian p-groups and covers of the integers by residue classes, Isr. J. Math., 170 (2009), 235–252.
P. Yuan and X. Zeng, A new result on Davenport constant, J. Number Theory, 129 (2009), 3026–3028.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Attila Pethő
This work was supported by the Austrian Science Fund FWF, Project No. P21576-N18. We kindly acknowledge the support of the DECI (Distributed Extreme Computing Initiative) within the muHEART project for providing access to the cineca supercomputer.
Rights and permissions
About this article
Cite this article
Geroldinger, A., Liebmann, M. & Philipp, A. On the Davenport constant and on the structure of extremal zero-sum free sequences. Period Math Hung 64, 213–225 (2012). https://doi.org/10.1007/s10998-012-3378-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-012-3378-6