[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the Davenport constant and on the structure of extremal zero-sum free sequences

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Let \(G = C_{n_1 } \oplus \cdots \oplus C_{n_r }\) with 1 < n 1 | … | n r be a finite abelian group, d*(G) = n 1 +…+n r r, and let d(G) denote the maximal length of a zerosum free sequence over G. Then d(G) ≥ d*(G), and the standing conjecture is that equality holds for G = C r n . We show that equality does not hold for C 2C r2n , where n ≥ 3 is odd and r ≥ 4. This gives new information on the structure of extremal zero-sum free sequences over C r2n .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bhowmik, I. Halupczok and J.-C. Schlage-Puchta, Zero-sum free sets with small sum-set, Math. Comp., 80 (2011), 2253–2258.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Bhowmik, I. Halupczok and J.-C. Schlage-Puchta, Inductive methods and zero-sum free sequences, Integers, 9 (2009), 515–536.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Bhowmik and J.-C. Schlage-Puchta, Davenport’s constant for groups of the form ℤ3 ⊕ ℤ3 ⊕ ℤ3d , Additive Combinatorics (A. Granville, M. B. Nathanson, and J. Solymosi, eds.), CRM Proceedings and Lecture Notes 43, American Mathematical Society, 2007, pp. 307–326.

  4. Y. Edel, Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G), Des. Codes Cryptography, 47 (2007), 125–134.

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin and L. Rackham, Zero-sum problems in finite abelian groups and affine caps, Q. J. Math., 58 (2007), 159–186.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Elsholtz, Lower bounds for multidimensional zero sums, Combinatorica, 24 (2004), 351–358.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Freeze and W. A. Schmid, Remarks on a generalization of the Davenport constant, Discrete Math., 310 (2010), 3373–3389.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Period. Math. Hung., 38 (1999), 179–211.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Gao and A. Geroldinger, Zero-sum problems and coverings by proper cosets, Eur. J. Comb., 24 (2003), 531–549.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math., 24 (2006), 337–369.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Gao, A. Geroldinger, and D.J. Grynkiewicz, Inverse zero-sum problems III, Acta Arith., 141 (2010), 103–152.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Geroldinger, Additive group theory and non-unique factorizations, Combi- natorial Number Theory and Additive Group Theory (A. Geroldinger and I. Ruzsa, eds.), Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1–86.

    Chapter  Google Scholar 

  13. A. Geroldinger and D. J. Grynkiewicz, On the structure of minimal zero-sum sequences with maximal cross number, J. Combinatorics and Number Theory, 1:2 (2009), 9–26.

    MathSciNet  Google Scholar 

  14. A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics 278, Chapman & Hall/CRC, 2006.

  15. A. Geroldinger and R. Schneider, On Davenport’s constant, J. Comb. Theory Ser. A, 61 (1992), 147–152.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Girard, Inverse zero-sum problems and algebraic invariants, Acta Arith., 135 (2008), 231–246.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Girard, A new upper bound for the cross number of finite abelian groups, Isr. J. Math., 172 (2009), 253–278.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Girard, Inverse zero-sum problems in finite abelian p-groups, Colloq. Math., 120 (2010), 7–21.

    Article  MathSciNet  MATH  Google Scholar 

  19. O. Ordaz, A. Philipp, I. Santos and W. A. Schmid, On the Olson and the strong Davenport constants, J. Théor. Nombres Bordx., 23 (2011), 715–750.

    Article  MathSciNet  Google Scholar 

  20. C. Reiher, A proof of the theorem according to which every prime number possesses property B, J. London. Math. Soc., to appear.

  21. S. Savchev and F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Math., 307 (2007), 2671–2679.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. A. Schmid, The inverse problem associated to the Davenport constant for C 2C 2C 2n , and applications to the arithmetical characterization of class groups, Electron. J. Comb., 18 (2011), research paper 33.

  23. W. A. Schmid, Inverse zero-sum problems II, Acta Arith., 143 (2010), 333–343.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Smertnig, On the Davenport constant and group algebras, Colloq. Math., 121 (2010), 179–193.

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhi-Wei Sun, Zero-sum problems for abelian p-groups and covers of the integers by residue classes, Isr. J. Math., 170 (2009), 235–252.

    Article  MATH  Google Scholar 

  26. P. Yuan and X. Zeng, A new result on Davenport constant, J. Number Theory, 129 (2009), 3026–3028.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Geroldinger.

Additional information

Communicated by Attila Pethő

This work was supported by the Austrian Science Fund FWF, Project No. P21576-N18. We kindly acknowledge the support of the DECI (Distributed Extreme Computing Initiative) within the muHEART project for providing access to the cineca supercomputer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geroldinger, A., Liebmann, M. & Philipp, A. On the Davenport constant and on the structure of extremal zero-sum free sequences. Period Math Hung 64, 213–225 (2012). https://doi.org/10.1007/s10998-012-3378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-012-3378-6

Mathematics subject classification numbers

Key words and phrases

Navigation