[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Circle geometry in affine Cayley-Klein planes

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Some theorems from inversive and Euclidean circle geometry are extended to all affine Cayley-Klein planes. In particular, we obtain an analogue to the first step of Clifford’s chain of theorems, a statement related to Napoleon’s theorem, extensions of Wood’s theorem on similar-perspective triangles and of the known fact that the three radical axes of three given circles are parallel or have a point in common. For proving these statements, we use generalized complex numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Asplund and B. Grünbaum, On the geometry of Minkowski planes, Enseign. Math., 6 (1960), 299–306.

    Google Scholar 

  2. W. Benz, Vorlesungen über die Geometrie der Algebren, Springer, Heidelberg — Berlin — New York, 1973.

    Google Scholar 

  3. H. S. M Coxeter, Introduction to Geometry, John Wiley and Sons, 2nd ed., 1969.

  4. M. Hajja and H. Martini, A note on similar-perspective triangles, J. Geom. Graphics, 10 (2006), 133–136.

    MATH  MathSciNet  Google Scholar 

  5. M. Hajja, H. Martini and M. Spirova, New extensions of Napoleon’s theorem to higher dimensions, Beiträge Algebra Geom., 49 (2008), 253–264.

    MATH  MathSciNet  Google Scholar 

  6. O. Giering, Vorlesungen über höhere Geometrie, Vieweg, Braunschweig — Wiesbaden, 1987.

    Google Scholar 

  7. H. Karzel and H.-J. Kroll, Geschichte der Geometrie seit Hilbert, Wiss. Buchges., Darmstadt, 1988.

    MATH  Google Scholar 

  8. A. Kirsch, Anschauliche Begründung einiger Verfahren der numerischen Mathematik aus der Geometrie der Parabel, Math. Semesterber., 35 (1988), 197–226.

    MathSciNet  Google Scholar 

  9. F. Klein, Vorlesungen über nicht-Euklidische Geometrie, Springer, Berlin, 1928.

    MATH  Google Scholar 

  10. H. Martini, On the theorem of Napoleon and related topics, Math. Semesterber., 43 (1996), 47–64.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Martini and M. Spirova, On Napoleon’s theorem in the isotropic plane, Period. Math. Hungar., 53 (2006), 199–208.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Martini and M. Spirova, The Feuerbach circle and orthocentricity in normed planes, Enseign. Math., 53 (2008), 237–258.

    Google Scholar 

  13. H. Martini and M. Spirova, Clifford’s chain of theorems in strictly convex Minkowski planes, Publ. Math. Debrecen, 72 (2008), 371–383.

    MATH  MathSciNet  Google Scholar 

  14. H. Martini and B. Weissbach, Napoleon’s theorem with weights in n-space, Geom. Dedicata, 74 (1999), 213–223.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Minkowski, Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern, Nachr. Kgl. Ges. Wiss. Göttingen, (1908), 53–111.

  16. H. Müller, Über eine geometrische Verwandtschaft fünften Grades, Math. Ann., 2 (1870), 281–282.

    Article  MathSciNet  Google Scholar 

  17. H. Schaal, Zur Verwandtschaft der Zwillingspunkte beim Dreieck, Beiträge Algebra Geom., 34 (1993), 177–189.

    MATH  MathSciNet  Google Scholar 

  18. H. Sachs, Ebene isotrope Geometrie, Vieweg, Braunschweig — Wiesbaden, 1987.

    MATH  Google Scholar 

  19. E. M. Schröder, Gemeinsame Eigenschaften euklidischer, galileischer und minkowskischer Ebenen, Mitt. Math. Ges. Hamburg, 10 (1974), 185–217.

    Google Scholar 

  20. M. Spirova, On the Napoleon-Torricelli configuration in affine Cayley-Klein planes, Abh. Math. Sem. Univ. Hamburg, 76 (2006), 131–142.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Spirova, Propellers in affine Cayley-Klein planes, J. Geom., to appear.

  22. K. Strubecker, Geometrie in einer isotropen Ebene I–III, Math.-Naturwiss. Unterricht, 15 (1962–63), 297–306; 343–351; 385–394.

    MATH  MathSciNet  Google Scholar 

  23. F. E. Wood, Similar-perspective triangles, Amer. Math. Monthly, 36 (1929), 67–73.

    Article  MATH  Google Scholar 

  24. I. M. Yaglom, Complex Numbers in Geometry, Academic Press Inc., 1968.

  25. I. M. Yaglom, A Simple Non-Euclidean Geometry and its Physical Basis, Springer, New York — Heidelberg — Berlin, 1979.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Martini.

Additional information

Supported by a grant D01-761/24.10.06 from the Ministry of Education and Sciences, and by a grant 108/2007 from Sofia University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martini, H., Spirova, M. Circle geometry in affine Cayley-Klein planes. Period Math Hung 57, 197–206 (2008). https://doi.org/10.1007/s10998-008-8197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-008-8197-5

Mathematics subject classification numbers

Key words and phrases

Navigation