[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Regime shifts in a socio-ecological model of farmland abandonment

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

We developed a mathematical model with two-way linked socio-ecological dynamics to study farmland abandonment and to understand the regimes shifts of this socio-ecological system. The model considers that migration is a collective behavior socio-economically driven and that the ecosystem is dynamic. The model identifies equilibria that vary from mass migration, farmland abandonment, and forest regeneration, to no migration and forest eradication; partial migration and/or coexistence of farmland and forest also constitute possible equilibria. Overall, the model reflects farmland abandonment processes observed in the field and illustrates the importance of the complex interlinked mechanisms between the social and ecological systems determining farmland abandonment, that are not evident when approached independently. The model dynamics show that the hysteresis on the social dynamics renders regimes shifts difficult to reverse, and that this difficulty is accentuated when considering the ecological system dynamic. Similar models could be applied to other socio-ecological systems to help their management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aleskerov F, Bouyssou D, Monjardet B (2007) Utility maximization, choice and preference (Studies in Economic theory). Springer, Berlin

    Google Scholar 

  • Bennett KD (1983) Postglacial population expansion of forest trees in Norfolk, UK. Nature 303:164–167

    Article  Google Scholar 

  • Bennett KD (1986) The rate of spread and population increase of forest trees during the post-glacial. Philos Trans R Soc Lond B 314:523–531

    Article  Google Scholar 

  • Bielsa I, Pons X, Bunce B (2005) Agricultural abandonment in the North Eastern Iberian Peninsula: the use of basic landscape metrics to support planning. J Environ Plan Manag 48(1):85–102

    Article  Google Scholar 

  • Bjørndal T, Conrad JM (1987) The dynamics of an open access fishery. Can J Econ 20:74–85

    Article  Google Scholar 

  • Callander S (2007) Bandwagons and momentum in sequential voting. Rev Econ Stud 74:653–684

    Article  Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005

    Article  PubMed  CAS  Google Scholar 

  • Carpenter S, Brock W, Hanson P (1999) Ecological and social dynamics in simple models of ecosystem management. Conserv Ecol 3(2):4

    Google Scholar 

  • Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Diaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc Natl Acad Sci USA 106(5):1305–1312

    Article  PubMed  CAS  Google Scholar 

  • Cinner JE, McClanahan TR, Daw TM, Graham NAJ, Maina J, Wilson SK, Hughes T (2009) Linking social and ecological systems to sustain coral reef fisheries. Curr Biol 19:206–212

    Article  PubMed  CAS  Google Scholar 

  • Fischbacher U, Gachter S, Fehr E (2001) Are people conditionally cooperative? Evidence from a public goods experiment. Econ Lett 71:397–404

    Article  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystems management. Annu Rev Ecol Evol Syst 35:557–581

    Article  Google Scholar 

  • Gellrich M, Zimmermann NE (2006) Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: a spatial statistical modelling approach. Landsc Urban Plan 79:65–76

    Article  Google Scholar 

  • Gellrich M, Baur P, Koch B, Zimmermann NE (2007) Agricultural land abandonment and natural forest re-growth in the Swiss mountains: a spatially explicit economic analysis. Agric Ecosyt Environ 118:93–108

    Article  Google Scholar 

  • Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6):1420–1443

    Article  Google Scholar 

  • Gunderson LH, Carpenter SR, Folke C, Olsson P, Peterson GD (2006) Water RATs (resilience, adaptability, and transformability) in lake and wetland social-ecological systems. Ecol Soc 11(1):16

    Google Scholar 

  • Hobbs RJ, Suding KN (2009) New models for ecosystem dynamics and restoration. Society for Ecological Restoration International. Island Press, Washington

    Google Scholar 

  • Homans FR, Wilen JE (1997) A model of regulated open access resource use. J Environ Econ Manag 32:1–21

    Article  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  PubMed  CAS  Google Scholar 

  • Iwasa Y, Uchida T, Yokomizo H (2007) Nonlinear behavior of the socio-economic dynamics for lake eutrophication control. Ecol Econ 63:219–229

    Article  Google Scholar 

  • Iwasa Y, Suzuki-Ohno Y, Yokomizo H (2010) Paradox of nutrient removal in coupled socioeconomic and ecological dynamics for lake water pollution. Theor Ecol 3(2):113–122

    Article  Google Scholar 

  • Jokisch BD (2002) Migration and agricultural change: the case of smallholder agriculture in highland Ecuador. Hum Ecol 30(4):523–550

    Article  Google Scholar 

  • Kanowski J, Kooyman RM, Catterall CP (2009) Dynamics and restoration of Australian tropical and subtropical rainforests. In: Hobbs RJ, Suding KN (eds) New models for ecosystem dynamics and restoration. Island Press, Washington, pp 206–220

    Google Scholar 

  • Keenleyside C, Tucker G (2010) Farmland abandonment in the EU: an assessment of trends and prospects. Institute for European Environmental Policy, London

    Google Scholar 

  • King EG, Whisenant S (2009) Thresholds in ecological and linked social-ecological systems: application to restoration. In: Hobbs RJ, Suding KN (eds) New models for ecosystem dynamics and restoration. Island Press, Washington, pp 63–77

    Google Scholar 

  • Kinzig AP, Ryan P, Etienne M, Allison H, Elmqvist T, Walker BH (2006) Resilience and regime shifts: assessing cascading effects. Ecol Soc 11(1):20

    Google Scholar 

  • Kuemmerle T, Hostert P, Radeloff VC, van der Linden S, Perzanowski K, Kruhlov I (2008) Cross-border comparison of postsocialist farmland abandonment in the Carpathians. Ecosystems 11:614–628

    Article  Google Scholar 

  • Lakes T, Müller D, Krüger C (2009) Cropland change in southern Romania: a comparison of logistic regressions and artificial neural networks. Landscape Ecol 24:1195–1206

    Article  Google Scholar 

  • Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, Pell AN, Deadman P, Kratz T, Lubchenco J, Ostrom E, Ouyang Z, Provencher W, Redman CL, Scheneider SH, Taylor WW (2007) Complexity of coupled human and natural systems. Science 317:1513

    Article  PubMed  CAS  Google Scholar 

  • MacDonald GM, Cwynar LC (1991) Post-glacial growth rates of Pinus contorta ssp. latifolia in Western Canada. J Ecol 79:417–429

    Article  Google Scholar 

  • MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Lazpita JG, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag 59:47–69

    Article  Google Scholar 

  • Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101

    Article  PubMed  CAS  Google Scholar 

  • Nemeth CJ, Wachtler J (1983) Creative problem solving as a result of majority vs minority influence? Eur J Soc Psychol 13:45–55

    Article  Google Scholar 

  • Nikodemus O, Bell S, Grīne I, Liepinš I (2005) The impact of economic, social and political factors on the landscape structure of the Vidzeme Uplands in Latvia. Landsc Urban Plan 70:57–67

    Article  Google Scholar 

  • Parés-Ramos IK, Gould WA, Aide TM (2008) Agricultural abandonment, suburban growth, forest expansion in Puerto Rico between 1991 and 2000. Ecol Soc 13(2):1–19

    Google Scholar 

  • Pereira E, Queiroz C, Pereira HM, Vicente L (2005) Ecosystem services and human well-being: a participatory study in a mountain community in Portugal. Ecol Soc 10(2):14

    Google Scholar 

  • Peterson G (2000) Political ecology and ecological resilience: an integration of human and ecological dynamics. Ecol Econ 35:323–336

    Article  Google Scholar 

  • Pollnac R, Christie P, Cinner JE, Dalton T, Daw TM, Forrester GE, Graham NAJ, McClanahan TR (2010) Marine reserves as linked social-ecological systems. Proc Natl Acad Sci USA 107:18262–18265

    Article  PubMed  CAS  Google Scholar 

  • Poyatos R, Latron J, Llorens P (2003) Land use and land cover change after agricultural abandonment, the case of a Mediterranean Mountain Area (Catalan Pre-Pyrenees). Mt Res Dev 23:362–368

    Article  Google Scholar 

  • Proença V, Pereira HM (2010) Mediterranean forest. In: Leadley PW, Pereira HM, Alkemade R, Fernandez-Manjarrés JF, Proença V, Scharlemann JPW, Walpole M (eds) Biodiversity scenarios: projections of 21st century change in biodiversity and associated ecosystem services. Secretariat of the Convention on Biological Diversity, Montreal, pp 60–67

    Google Scholar 

  • Resilience Alliance and Santa Fe Institute (2010) Thresholds and alternate states in ecological and social-ecological systems. Resilience Alliance (Online). http://www.resalliance.org/index.php?id=183

  • Satake A, Iwasa Y (2006) Coupled ecological and social dynamics in a forested landscape: the deviation of individual decisions from the social optimum. Ecol Res 21:370–379

    Article  Google Scholar 

  • Satake A, Leslie HM, Iwasa Y, Levin SA (2007a) Coupled ecological–social dynamics in a forested landscape: spatial interactions and information flow. J Theor Biol 246:695–707

    Article  PubMed  Google Scholar 

  • Satake A, Janssen MA, Levin SA, Iwasa Y (2007b) Synchronized deforestation induced by social learning under uncertainty of forest-use value. Ecol Econ 63:452–462

    Article  Google Scholar 

  • Scheffer M (2008) Critical transitions in nature and society. Princeton University Press, Princeton

    Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 12:648–656

    Article  Google Scholar 

  • Scheffer M, Carpenter SR, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  PubMed  CAS  Google Scholar 

  • Suding KN, Hobbs RJ (2009) Models of ecosystem dynamics as frameworks for restoration ecology. In: Hobbs RJ, Suding KN (eds) New models for ecosystem dynamics and restoration. Island Press, Washington, pp 3–21

    Google Scholar 

  • Suding KN, Gross KL, Houseman G (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 193:46–53

    Article  Google Scholar 

  • Suzuki Y, Iwasa Y (2009a) The coupled dynamics of human socio-economic choice and lake water system: the interaction of two sources of nonlinearity. Ecol Res 24:479–489

    Article  Google Scholar 

  • Suzuki Y, Iwasa Y (2009b) Conflict between groups of players in coupled socio-economic and ecological dynamics. Ecol Econ 68:1106–1115

    Article  Google Scholar 

  • Tilman D, Kareiva PM (1997) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton

    Google Scholar 

  • Tsukada M (1981) Cryptomeria japonica Don I. Pollen dispersal and logistic forest expansion. Jpn J Ecol 31:371–383

    Google Scholar 

  • van Vuuren D, Sala O, Pereira HM (2006) The future of vascular plant diversity under four global scenarios. Ecol Soc 11:25

    Google Scholar 

  • Verburg PH, Overmars KP (2009) Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecol 24:1167–1181

    Article  Google Scholar 

  • Walker B, Meyers JA (2004) Thresholds in ecological and social–ecological systems: a developing database. Ecol Soc 9(2):3–18

    Google Scholar 

  • Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social–ecological systems. Ecol Soc 9(2):5

    Google Scholar 

Download references

Acknowledgments

We would like to thank S. Connolly, J. Anto, T. Pinto-Correia, and I. Loupa Ramos, for their comments and Fundação para a Ciência e a Tecnologia for financial support to the project ABAFOBIO—Farmland Abandonment, Fire and Biodiversity (PTDC/AMB/73901/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Figueiredo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiredo, J., Pereira, H.M. Regime shifts in a socio-ecological model of farmland abandonment. Landscape Ecol 26, 737–749 (2011). https://doi.org/10.1007/s10980-011-9605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-011-9605-3

Keywords

Navigation