[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Evidence of quasi-intramolecular redox reactions during thermal decomposition of ammonium hydroxodisulfitoferriate(III), (NH4)2[Fe(OH)(SO3)2]·H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Synthesis of ammonium hydroxodisulfitoferriate(III), (diammonium catena-{bis(μ 2-sulfito-κO,κO)-μ 2-hydroxo-κ2O}ferrate(III) monohydrate) (NH4)2[Fe(OH)(SO3)2]·H2O (compound 1) and its thermal behavior is reported. The compound is stable in air. Its thermal decomposition proceeds without the expected quasi-intramolecular oxidation of sulfite ion with ferric ions. The disproportionation reaction of the ammonium sulfite, formed from the evolved NH3, SO2 and H2O in the main decomposition stage of 1, results in the formation of ammonium sulfate and ammonium sulfide. The ammonium sulfide is unstable at the decomposition temperature of 1 (150 °C) and transforms into NH3 and H2S which immediately forms elementary sulfur by reaction with SO2. The formation and decomposition of other intermediate compounds like (NH4)2SnOx (n = 2, x = 3 and n = 3, x = 6) results in the same decomposition products (S, SO2 and NH3). Two basic iron sulfates, formed in different ratios during synthesizing experiments performed under N2 or in the presence of air, have been detected as solid intermediates which contain ammonium ions. The final decomposition product was proved to be α-Fe2O3 (mineral name hematite).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kótai L, Gács I, Sajó IE, Sharma PK, Banerji KK. Beliefs and facts in permanganate chemistry—an overview of the synthesis and the reactivity of simple and complex permanganates. Trends Inorg Chem. 2009;11:25–104.

    Google Scholar 

  2. Kotai L, Banerji KK, Sajo I, Kristof J, Sreedhar B, Holly S, Keresztury G, Rockenbauer A. An unprecedented-type intramolecular redox reaction of solid tetraamminecopper(2+) bis(permanganate) ([Cu(NH3)4](MnO4)2)—a low-temperature synthesis of copper dimanganese tetraoxide-type (CuMn2O4) nanocrystalline catalyst precursors. Helv Chim Acta. 2002;85(8):2316–27. https://doi.org/10.1002/1522-2675(200208)85:8<2316:AID-HLCA2316>3.0.CO;2-A.

    Article  CAS  Google Scholar 

  3. Kotai L, Fodor J, Jakab E, Sajo I, Szabo P, Lonyi F, Valyon J, Gacs I, Argay G, Banerji KK. A thermally induced low-temperature intramolecular redox reaction of bis(pyridine)silver(I) permanganate and its hemipyridine solvate. Trans Metal Chem. 2006;31(1):30–4. https://doi.org/10.1007/s11243-005-6322-2.

    Article  CAS  Google Scholar 

  4. Sajo IE, Kotai L, Keresztury G, Gacs I, Pokol Gy, Kristof J, Soptrayanov B, Petrusevski VM, Timpu D, Sharma PK. Studies on the chemistry of tetraamminezinc(II) dipermanganate ([Zn(NH3)4](MnO4)2): low-temperature synthesis of the manganese zinc oxide (ZnMn2O4) catalyst precursor. Helv Chim Acta. 2008;91(9):1646–58. https://doi.org/10.1002/hlca.200890180.

    Article  CAS  Google Scholar 

  5. Kótai L, Sajó IE, Keresztury G, Németh CS, Gács I, Menyhárd A, Kristóf J, Hajba L, Petrusevski VM, Ivanovski V, Timpu D, Sharma PK. Studies on the chemistry of [Cd(NH3)4](MnO4)2. A low-temperature synthesis route of the CdMn2O4+x Type NOx and CH3SH sensor precursors. Z Anorg Allgem Chem. 2012;638(1):177–86. https://doi.org/10.1002/zaac.201100467.

    Article  Google Scholar 

  6. Hunyadi D, Sajó IE, Szilágyi IM. Structure and thermal decomposition of ammonium metatungstate. J Therm Anal Calorim. 2014;116:329–37.

    Article  CAS  Google Scholar 

  7. Hunyadi D, Ramos ALVM, Szilágyi IM. Thermal decomposition of ammonium tetrathiotungstate. J Therm Anal Calorim. 2015;120:209–15. https://doi.org/10.1007/s10973-015-4513-4.

    Article  CAS  Google Scholar 

  8. Nagy-Kovács T, Hunyadi D, de Lucena ALA, Szilágyi IM. Thermal decomposition of ammonium molybdates. J Therm Anal Calorim. 2016;124:1013–21. https://doi.org/10.1007/s10973-015-5201-0.

    Article  Google Scholar 

  9. Erämetsä O, Valkonen J. Ammonium ferric sulfites. Suomen Kemistilehti. 1972;45(3):91–4.

    Google Scholar 

  10. Erämetsä O. Über Ammonisulfitoferriate. Ann Acad Sci Fenn Ser A. 1943;59:5–30.

    Google Scholar 

  11. Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds, Part A and B. 5th ed. New York: Wiley Intersci Publications; 1997.

    Google Scholar 

  12. Newman G, Powell DB. The infra-red spectra and structures of metal sulfite compounds. Spectrochim Acta. 1963;19:213–24. https://doi.org/10.1016/0371-1951(63)80100-9.

    Article  CAS  Google Scholar 

  13. Skorik NA, Zatolokina NA. Reaction of iron(III) with sulfite in various media. Zh Neorg Khim. 1986;31(9):2287–91.

    CAS  Google Scholar 

  14. Maxteed EB. The synthesis of ammonia and the oxidation of ammonia to nitric acid. J Soc Chem Ind. 1907;36:777–82. https://doi.org/10.1002/jctb.5000361401.

    Google Scholar 

  15. Jaszczak-Figiel B, Gontarz Z. Stages of thermal decomposition of sodium oxosalts of sulphur. J Therm Anal Calorim. 2009;96:147–54. https://doi.org/10.1007/s10973-008-9195-8.

    Article  CAS  Google Scholar 

  16. Erdey L, Simon J, Gál S, Liptay G. Thermoanalytical properties of analytical-grade reagents—IVA: sodium salts. Talanta. 1966;13(1):67–80. https://doi.org/10.1016/0039-9140(66)80127-3.

    Article  CAS  Google Scholar 

  17. Budkuley JS, Patil KC. Synthesis, infrared spectra and thermoanalytical properties of transition metal sulfite hydrazine hydrates. J Therm Anal Calorim. 1990;36:2583–92. https://doi.org/10.1007/BF01913655.

    Article  CAS  Google Scholar 

  18. Bugli G, Pannettier G. Décomposition thermique du sulfite de fer(II) anhydre. J Therm Anal Calorim. 1979;16(2):355–63. https://doi.org/10.1007/BF01910697.

    Article  CAS  Google Scholar 

  19. Meyer B. Elemental sulfur. Chem Rev. 1976;76(3):367–88. https://doi.org/10.1021/cr60301a003.

    Article  CAS  Google Scholar 

  20. Startsev AN, Kruglyakova OV. Diatomic gaseous sulfur obtained at low temperature catalytic decomposition of hydrogen sulfide. J Chem Chem Eng. 2013;7:1007–13.

    CAS  Google Scholar 

  21. Applebey MP, Lanyon JA. The oxidation of ammonium sulphide. J Chem Soc. 1926. https://doi.org/10.1039/JR9262902983.

    Google Scholar 

  22. Rammelsberg C. Beitrage zur Kenntniss der unterschweflig-sauren Salze. Pogg Ann. 1842;132(6):295–323. https://doi.org/10.1002/andp.18421320609.

    Google Scholar 

  23. Divers E, Ogawa M. Products of heating of ammonium sulphites, thiosulphate and trithionate. J Chem Soc Trans. 1900;77:335–40. https://doi.org/10.1039/CT9007700335.

    Article  CAS  Google Scholar 

  24. Trofimov BA, Sinegovskaya LM, Gusarova NK. Vibrations of the S–S bond in elemental sulfur and organic polysulfides: a structural guide. J Sulfur Chem. 2009;30(5):518–54. https://doi.org/10.1080/17415990902998579.

    Article  CAS  Google Scholar 

  25. Frost RL, Wills R-A, Kloprogge T, Martens W. Thermal decomposition of ammonium jarosite (NH4)Fe3(SO4)2(OH)6. J Therm Anal Calorim. 2006;84(2):489–96. https://doi.org/10.1007/s10973-005-6953-8.

    Article  CAS  Google Scholar 

  26. Lopez-Delgado A, Lopez FA. Thermal decomposition of ferric and ammonium sulfates obtained by bio-oxidation of water pickling liquors with Thiobacillus ferrooxidans. J Mater Sci. 1995;30:5130–8.

    Article  CAS  Google Scholar 

  27. Majzlan J, Alpers CN, Bender Koch C, McCleskey RB, Myneni SCB, Neil JM. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chem Geol. 2011;284:296–305. https://doi.org/10.1016/j.chemgeo.2011.03.008.

    Article  CAS  Google Scholar 

  28. Garcia FJ, Rubio A, Sainz E, Gonzalez P, Lopez FA. Preliminary study of treatment of sulphuric pickling water waste from steelmaking by bio-oxidation with thiobacillus ferrooxidans. FEMS Microbiol Rev. 1994;14:397–404. https://doi.org/10.1111/j.1574-6976.1994.tb00114.x.

    Article  CAS  Google Scholar 

  29. Demartin F, Grammaccioli CM, Campostrini I. Pyracmonite, (NH4)3Fe(SO4)3, a new ammonium iron sulfate from La Fossa, Crater, Vulcano, Aeolian Islands, Italy. Can Mineralo. 2010;48:307–13. https://doi.org/10.3749/canmin.48.2.307.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. Magyari thanks for supporting the research by Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 172014). I. M. Szilágyi thanks for a János Bolyai Research Fellowship of the Hungarian Academy of Sciences and an ÚNKP-17-4-IV-BME-188 Grant. An OTKA PD-109129 Grant, a VEKOP-2.3.2.-16-2017-00013 and a K 124212 Grant are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Kótai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocsis, T., Magyari, J., Sajó, I.E. et al. Evidence of quasi-intramolecular redox reactions during thermal decomposition of ammonium hydroxodisulfitoferriate(III), (NH4)2[Fe(OH)(SO3)2]·H2O. J Therm Anal Calorim 132, 493–502 (2018). https://doi.org/10.1007/s10973-017-6901-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6901-4

Keywords

Navigation