Abstract
Synthesis of ammonium hydroxodisulfitoferriate(III), (diammonium catena-{bis(μ 2-sulfito-κO,κO)-μ 2-hydroxo-κ2O}ferrate(III) monohydrate) (NH4)2[Fe(OH)(SO3)2]·H2O (compound 1) and its thermal behavior is reported. The compound is stable in air. Its thermal decomposition proceeds without the expected quasi-intramolecular oxidation of sulfite ion with ferric ions. The disproportionation reaction of the ammonium sulfite, formed from the evolved NH3, SO2 and H2O in the main decomposition stage of 1, results in the formation of ammonium sulfate and ammonium sulfide. The ammonium sulfide is unstable at the decomposition temperature of 1 (150 °C) and transforms into NH3 and H2S which immediately forms elementary sulfur by reaction with SO2. The formation and decomposition of other intermediate compounds like (NH4)2SnOx (n = 2, x = 3 and n = 3, x = 6) results in the same decomposition products (S, SO2 and NH3). Two basic iron sulfates, formed in different ratios during synthesizing experiments performed under N2 or in the presence of air, have been detected as solid intermediates which contain ammonium ions. The final decomposition product was proved to be α-Fe2O3 (mineral name hematite).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kótai L, Gács I, Sajó IE, Sharma PK, Banerji KK. Beliefs and facts in permanganate chemistry—an overview of the synthesis and the reactivity of simple and complex permanganates. Trends Inorg Chem. 2009;11:25–104.
Kotai L, Banerji KK, Sajo I, Kristof J, Sreedhar B, Holly S, Keresztury G, Rockenbauer A. An unprecedented-type intramolecular redox reaction of solid tetraamminecopper(2+) bis(permanganate) ([Cu(NH3)4](MnO4)2)—a low-temperature synthesis of copper dimanganese tetraoxide-type (CuMn2O4) nanocrystalline catalyst precursors. Helv Chim Acta. 2002;85(8):2316–27. https://doi.org/10.1002/1522-2675(200208)85:8<2316:AID-HLCA2316>3.0.CO;2-A.
Kotai L, Fodor J, Jakab E, Sajo I, Szabo P, Lonyi F, Valyon J, Gacs I, Argay G, Banerji KK. A thermally induced low-temperature intramolecular redox reaction of bis(pyridine)silver(I) permanganate and its hemipyridine solvate. Trans Metal Chem. 2006;31(1):30–4. https://doi.org/10.1007/s11243-005-6322-2.
Sajo IE, Kotai L, Keresztury G, Gacs I, Pokol Gy, Kristof J, Soptrayanov B, Petrusevski VM, Timpu D, Sharma PK. Studies on the chemistry of tetraamminezinc(II) dipermanganate ([Zn(NH3)4](MnO4)2): low-temperature synthesis of the manganese zinc oxide (ZnMn2O4) catalyst precursor. Helv Chim Acta. 2008;91(9):1646–58. https://doi.org/10.1002/hlca.200890180.
Kótai L, Sajó IE, Keresztury G, Németh CS, Gács I, Menyhárd A, Kristóf J, Hajba L, Petrusevski VM, Ivanovski V, Timpu D, Sharma PK. Studies on the chemistry of [Cd(NH3)4](MnO4)2. A low-temperature synthesis route of the CdMn2O4+x Type NOx and CH3SH sensor precursors. Z Anorg Allgem Chem. 2012;638(1):177–86. https://doi.org/10.1002/zaac.201100467.
Hunyadi D, Sajó IE, Szilágyi IM. Structure and thermal decomposition of ammonium metatungstate. J Therm Anal Calorim. 2014;116:329–37.
Hunyadi D, Ramos ALVM, Szilágyi IM. Thermal decomposition of ammonium tetrathiotungstate. J Therm Anal Calorim. 2015;120:209–15. https://doi.org/10.1007/s10973-015-4513-4.
Nagy-Kovács T, Hunyadi D, de Lucena ALA, Szilágyi IM. Thermal decomposition of ammonium molybdates. J Therm Anal Calorim. 2016;124:1013–21. https://doi.org/10.1007/s10973-015-5201-0.
Erämetsä O, Valkonen J. Ammonium ferric sulfites. Suomen Kemistilehti. 1972;45(3):91–4.
Erämetsä O. Über Ammonisulfitoferriate. Ann Acad Sci Fenn Ser A. 1943;59:5–30.
Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds, Part A and B. 5th ed. New York: Wiley Intersci Publications; 1997.
Newman G, Powell DB. The infra-red spectra and structures of metal sulfite compounds. Spectrochim Acta. 1963;19:213–24. https://doi.org/10.1016/0371-1951(63)80100-9.
Skorik NA, Zatolokina NA. Reaction of iron(III) with sulfite in various media. Zh Neorg Khim. 1986;31(9):2287–91.
Maxteed EB. The synthesis of ammonia and the oxidation of ammonia to nitric acid. J Soc Chem Ind. 1907;36:777–82. https://doi.org/10.1002/jctb.5000361401.
Jaszczak-Figiel B, Gontarz Z. Stages of thermal decomposition of sodium oxosalts of sulphur. J Therm Anal Calorim. 2009;96:147–54. https://doi.org/10.1007/s10973-008-9195-8.
Erdey L, Simon J, Gál S, Liptay G. Thermoanalytical properties of analytical-grade reagents—IVA: sodium salts. Talanta. 1966;13(1):67–80. https://doi.org/10.1016/0039-9140(66)80127-3.
Budkuley JS, Patil KC. Synthesis, infrared spectra and thermoanalytical properties of transition metal sulfite hydrazine hydrates. J Therm Anal Calorim. 1990;36:2583–92. https://doi.org/10.1007/BF01913655.
Bugli G, Pannettier G. Décomposition thermique du sulfite de fer(II) anhydre. J Therm Anal Calorim. 1979;16(2):355–63. https://doi.org/10.1007/BF01910697.
Meyer B. Elemental sulfur. Chem Rev. 1976;76(3):367–88. https://doi.org/10.1021/cr60301a003.
Startsev AN, Kruglyakova OV. Diatomic gaseous sulfur obtained at low temperature catalytic decomposition of hydrogen sulfide. J Chem Chem Eng. 2013;7:1007–13.
Applebey MP, Lanyon JA. The oxidation of ammonium sulphide. J Chem Soc. 1926. https://doi.org/10.1039/JR9262902983.
Rammelsberg C. Beitrage zur Kenntniss der unterschweflig-sauren Salze. Pogg Ann. 1842;132(6):295–323. https://doi.org/10.1002/andp.18421320609.
Divers E, Ogawa M. Products of heating of ammonium sulphites, thiosulphate and trithionate. J Chem Soc Trans. 1900;77:335–40. https://doi.org/10.1039/CT9007700335.
Trofimov BA, Sinegovskaya LM, Gusarova NK. Vibrations of the S–S bond in elemental sulfur and organic polysulfides: a structural guide. J Sulfur Chem. 2009;30(5):518–54. https://doi.org/10.1080/17415990902998579.
Frost RL, Wills R-A, Kloprogge T, Martens W. Thermal decomposition of ammonium jarosite (NH4)Fe3(SO4)2(OH)6. J Therm Anal Calorim. 2006;84(2):489–96. https://doi.org/10.1007/s10973-005-6953-8.
Lopez-Delgado A, Lopez FA. Thermal decomposition of ferric and ammonium sulfates obtained by bio-oxidation of water pickling liquors with Thiobacillus ferrooxidans. J Mater Sci. 1995;30:5130–8.
Majzlan J, Alpers CN, Bender Koch C, McCleskey RB, Myneni SCB, Neil JM. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chem Geol. 2011;284:296–305. https://doi.org/10.1016/j.chemgeo.2011.03.008.
Garcia FJ, Rubio A, Sainz E, Gonzalez P, Lopez FA. Preliminary study of treatment of sulphuric pickling water waste from steelmaking by bio-oxidation with thiobacillus ferrooxidans. FEMS Microbiol Rev. 1994;14:397–404. https://doi.org/10.1111/j.1574-6976.1994.tb00114.x.
Demartin F, Grammaccioli CM, Campostrini I. Pyracmonite, (NH4)3Fe(SO4)3, a new ammonium iron sulfate from La Fossa, Crater, Vulcano, Aeolian Islands, Italy. Can Mineralo. 2010;48:307–13. https://doi.org/10.3749/canmin.48.2.307.
Acknowledgements
J. Magyari thanks for supporting the research by Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 172014). I. M. Szilágyi thanks for a János Bolyai Research Fellowship of the Hungarian Academy of Sciences and an ÚNKP-17-4-IV-BME-188 Grant. An OTKA PD-109129 Grant, a VEKOP-2.3.2.-16-2017-00013 and a K 124212 Grant are acknowledged.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kocsis, T., Magyari, J., Sajó, I.E. et al. Evidence of quasi-intramolecular redox reactions during thermal decomposition of ammonium hydroxodisulfitoferriate(III), (NH4)2[Fe(OH)(SO3)2]·H2O. J Therm Anal Calorim 132, 493–502 (2018). https://doi.org/10.1007/s10973-017-6901-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-017-6901-4