Abstract
Applicability of super-insulating silica aerogel materials for thermal insulation is still restricted by limited mechanical strength. We report on a systematic improvement of silica aerogels in respect to shrinkage, density and thermal conductivity by varying sol-gel parameters as the molar ratios of TEOS:EtOH:H2O or the hydrolysis time. The received silica aerogels can be combined with paper-based honeycomb structures to improve the mechanical strength. We successfully manufactured such silica aerogel paper honeycomb composites. The challenges in the preparation are the must to prevent shrinkage of the silica aerogels during synthesis, to avoid cracks by supercritical drying, and to get a perfect bonding at the paper–silica interface. The composite materials are characterized with respect to their compression modulus, thermal conductivity, and flammability.
Graphical abstract
Similar content being viewed by others
References
Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San Diego
Hüsing N, Schubert U (1998) Angew Chem Int Ed 37(1–2):23–45
Schwertfeger F, Frank D, Schmidt M (1998) J Non-Cryst Solids 225(1):24–29
Soleimani Dorcheh A, Abbasi MH (2008) J Mater Process Technol 199(1–3):10–26
Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DY (2010) J Nanomater 2010:1–11
Randall JP, Meador MAB, Jana SC (2011) ACS Appl Mater Interfaces 3(3):613–626
Baetens R, Jelle BP, Gustavsen A (2011) Energy and Build 43(4):761–769
Pierre A, Rigacci A (2011) SiO2 aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol-gel derived materials and technologies. Springer, New York, p 21–45
Koebel M, Rigacci A, Achard P (2012) J Sol-Gel Sci Technol 63(3):315–339
Du A, Zhou B, Zhang ZH, Shen J (2013) Materials 6(3):941–968
Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Microporous Mesoporous Mater 183:23–29
Woignier T, Despetis F, Alaoui A, Etienne P, Phalippou J (2000) J Sol-Gel Sci Technol 19(1):163–169
Ma H-S, Roberts AP, Prévost J-H, Jullien R, Scherer GW (2000) J Non-Cryst Solids 277(2–3):127–141
Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge
Hong SW, Song IH, Park YJ, Yun HS, Hwang KY, Rhee YW (2012) Met Mater Int 18(3):481–486
Schwan M, Milow B, Ratke L (2014) MRS Commun 4(4):177–181
Schwan M, Rößler M, Milow B, Ratke L (2016) Gels 2(1):1–15
Specification SWAP Sinus Wave Board not-laminated (2013) SWAP GmbH. http://www.swap-sachsen.de/en/wp-content/uploads/sites/2/2013/12/K1_AZ_04_Specification.SWAP_.Sinus_.Wave_.board_.not_.laminated.pdf. Accessed 22 Dec 2016
Goutierre T (2011) Advanced thermal insulation for energy efficient buildings: structural performance of aerogel composite panels. Massachusetts Institute of Technology, Cambridge
Chen K, Neugebauer A, Goutierre T, Tang A, Glicksman L, Gibson LJ (2014) Energy Build 76:336–346
Klein LC (1985) Annu Rev Mater Sci 15(1):227–248
Rao AV, Parvathy NN (1993) J Mater Sci 28(11):3021–3026
Stolarski M, Walendziewski J, Steininger M, Pniak B (1999) Appl Catal A 177(2):139–148
Tamon H, Kitamura T, Okazaki M (1998) J Colloid Interface Sci 197(2):353–359
Rao AV, Bhagat SD (2004) Solid State Sci 6(9):945–952
Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60(2):309–319
Wei GS, Liu YS, Zhang XX, Yu F, Du XZ (2011) Int J Heat Mass Transfer 54(11–12):2355–2366
Hrubesh LW, Pekala RW (2011) J Mater Res 9(3):731–738
Ebert H-P (2011) Thermal properties of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol-gel derived materials and technologies. Springer, New York, p 537–564
Scherer DMS GW, Qiu X, Anderson JM (1995) J Non-Cryst solids 186:316–320
Parmenter KE, Milstein F (1998) J Non-Cryst Solids 223(3):179–189
Moner-Girona M, Roig A, Molins E, Martı́nez E, Esteve J (1999) Appl Phys Lett 75(5):653–655
Ma H-S, Prévost J-H, Jullien R, Scherer GW (2001) J Non-Cryst Solids 285(1–3):216–221
Liu H, Xia X, Ai Q, Xie X, Sun C (2017) Exp Therm Fluid Sci 84:67–77
Acknowledgements
This work has been financially supported by the European Union through the NRW-EFRE Project No. 64.65.69-PRO-0057 A (AeroBau). We also acknowledge support by Dr. Matthias Kolbe from DLR, Cologne for help with the SEM images. We thank Swap GmbH and Koehler Greiz GmbH for providing honeycombs.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Rights and permissions
About this article
Cite this article
Berkefeld, A., Heyer, M. & Milow, B. Silica aerogel paper honeycomb composites for thermal insulations. J Sol-Gel Sci Technol 84, 486–495 (2017). https://doi.org/10.1007/s10971-017-4497-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10971-017-4497-6