[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Silica aerogel paper honeycomb composites for thermal insulations

  • Invited Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Applicability of super-insulating silica aerogel materials for thermal insulation is still restricted by limited mechanical strength. We report on a systematic improvement of silica aerogels in respect to shrinkage, density and thermal conductivity by varying sol-gel parameters as the molar ratios of TEOS:EtOH:H2O or the hydrolysis time. The received silica aerogels can be combined with paper-based honeycomb structures to improve the mechanical strength. We successfully manufactured such silica aerogel paper honeycomb composites. The challenges in the preparation are the must to prevent shrinkage of the silica aerogels during synthesis, to avoid cracks by supercritical drying, and to get a perfect bonding at the paper–silica interface. The composite materials are characterized with respect to their compression modulus, thermal conductivity, and flammability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San Diego

    Google Scholar 

  2. Hüsing N, Schubert U (1998) Angew Chem Int Ed 37(1–2):23–45

    Google Scholar 

  3. Schwertfeger F, Frank D, Schmidt M (1998) J Non-Cryst Solids 225(1):24–29

    Article  Google Scholar 

  4. Soleimani Dorcheh A, Abbasi MH (2008) J Mater Process Technol 199(1–3):10–26

    Article  Google Scholar 

  5. Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DY (2010) J Nanomater 2010:1–11

    Article  Google Scholar 

  6. Randall JP, Meador MAB, Jana SC (2011) ACS Appl Mater Interfaces 3(3):613–626

    Article  Google Scholar 

  7. Baetens R, Jelle BP, Gustavsen A (2011) Energy and Build 43(4):761–769

    Article  Google Scholar 

  8. Pierre A, Rigacci A (2011) SiO2 aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol-gel derived materials and technologies. Springer, New York, p 21–45

    Google Scholar 

  9. Koebel M, Rigacci A, Achard P (2012) J Sol-Gel Sci Technol 63(3):315–339

    Article  Google Scholar 

  10. Du A, Zhou B, Zhang ZH, Shen J (2013) Materials 6(3):941–968

    Article  Google Scholar 

  11. Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Microporous Mesoporous Mater 183:23–29

    Article  Google Scholar 

  12. Woignier T, Despetis F, Alaoui A, Etienne P, Phalippou J (2000) J Sol-Gel Sci Technol 19(1):163–169

    Article  Google Scholar 

  13. Ma H-S, Roberts AP, Prévost J-H, Jullien R, Scherer GW (2000) J Non-Cryst Solids 277(2–3):127–141

    Article  Google Scholar 

  14. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  15. Hong SW, Song IH, Park YJ, Yun HS, Hwang KY, Rhee YW (2012) Met Mater Int 18(3):481–486

    Article  Google Scholar 

  16. Schwan M, Milow B, Ratke L (2014) MRS Commun 4(4):177–181

    Article  Google Scholar 

  17. Schwan M, Rößler M, Milow B, Ratke L (2016) Gels 2(1):1–15

    Article  Google Scholar 

  18. Specification SWAP Sinus Wave Board not-laminated (2013) SWAP GmbH. http://www.swap-sachsen.de/en/wp-content/uploads/sites/2/2013/12/K1_AZ_04_Specification.SWAP_.Sinus_.Wave_.board_.not_.laminated.pdf. Accessed 22 Dec 2016

  19. Goutierre T (2011) Advanced thermal insulation for energy efficient buildings: structural performance of aerogel composite panels. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  20. Chen K, Neugebauer A, Goutierre T, Tang A, Glicksman L, Gibson LJ (2014) Energy Build 76:336–346

    Article  Google Scholar 

  21. Klein LC (1985) Annu Rev Mater Sci 15(1):227–248

    Article  Google Scholar 

  22. Rao AV, Parvathy NN (1993) J Mater Sci 28(11):3021–3026

    Article  Google Scholar 

  23. Stolarski M, Walendziewski J, Steininger M, Pniak B (1999) Appl Catal A 177(2):139–148

    Article  Google Scholar 

  24. Tamon H, Kitamura T, Okazaki M (1998) J Colloid Interface Sci 197(2):353–359

    Article  Google Scholar 

  25. Rao AV, Bhagat SD (2004) Solid State Sci 6(9):945–952

    Article  Google Scholar 

  26. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60(2):309–319

    Article  Google Scholar 

  27. Wei GS, Liu YS, Zhang XX, Yu F, Du XZ (2011) Int J Heat Mass Transfer 54(11–12):2355–2366

    Article  Google Scholar 

  28. Hrubesh LW, Pekala RW (2011) J Mater Res 9(3):731–738

    Article  Google Scholar 

  29. Ebert H-P (2011) Thermal properties of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol-gel derived materials and technologies. Springer, New York, p 537–564

    Google Scholar 

  30. Scherer DMS GW, Qiu X, Anderson JM (1995) J Non-Cryst solids 186:316–320

    Article  Google Scholar 

  31. Parmenter KE, Milstein F (1998) J Non-Cryst Solids 223(3):179–189

    Article  Google Scholar 

  32. Moner-Girona M, Roig A, Molins E, Martı́nez E, Esteve J (1999) Appl Phys Lett 75(5):653–655

    Article  Google Scholar 

  33. Ma H-S, Prévost J-H, Jullien R, Scherer GW (2001) J Non-Cryst Solids 285(1–3):216–221

    Article  Google Scholar 

  34. Liu H, Xia X, Ai Q, Xie X, Sun C (2017) Exp Therm Fluid Sci 84:67–77

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the European Union through the NRW-EFRE Project No. 64.65.69-PRO-0057 A (AeroBau). We also acknowledge support by Dr. Matthias Kolbe from DLR, Cologne for help with the SEM images. We thank Swap GmbH and Koehler Greiz GmbH for providing honeycombs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Berkefeld.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkefeld, A., Heyer, M. & Milow, B. Silica aerogel paper honeycomb composites for thermal insulations. J Sol-Gel Sci Technol 84, 486–495 (2017). https://doi.org/10.1007/s10971-017-4497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4497-6

Keywords

Navigation