[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Numerical Computation of Optimal Control Problems with Atangana–Baleanu Fractional Derivatives

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a computational method is proposed for solving a class of fractional optimal control problems subject to canonical constraints of equality and inequality. Fractional derivatives are described in the Atangana–Baleanu-Caputo sense, and their fractional orders can be different. To solve this problem, we present a discretization scheme based on the trapezoidal rule and a novel numerical integration technique. Then, the gradient formulas of the cost and constraint functions with respect to the decision variables are derived. Furthermore, a gradient-based optimization algorithm for solving the discretized optimal control problem is developed. Finally, the applicability and effectiveness of the proposed algorithm are verified through three non-trivial example problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agrawal, O.P.: A formulation and a numerical scheme for fractional optimal control problems. IFAC Proc. Vol. 39, 68–72 (2006)

    Google Scholar 

  2. Agrawal, O.P.: A quadratic numerical scheme for fractional optimal control problems. J. Dyn. Syst. Meas. Contr. 130, 011010 (2008)

    Google Scholar 

  3. Ammi, M.R.S., Torres, D.F.M.: Optimal control of a nonlocal thermistor problem with ABC fractional time derivatives. Comput. Math. Appl. 78, 1507–1516 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Google Scholar 

  5. Baleanu, D., Defterli, O., Agrawal, O.P.: A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 154, 583–597 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Baleanu, D., Jajari, A., Hajipour, M.: A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel. J. Optim. Theory Appl. 175, 718–737 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Batool, A., Talib, I., Riaz, M., Tunç, C.: Extension of lower and upper solutions approach for generalized nonlinear fractional boundary value problems. Arab J. Basic Appl. Sci. 29, 249–257 (2022)

    Google Scholar 

  9. Bohner, M., Tunç, O., Tunç, C.: Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Comput. Appl. Math. 40, 214 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  11. Gómez-Aguilar, J.F.: Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A 494, 52–75 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, V.F.: Morales-Delgado, Electric circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circuit Theory Appl. 45, 1514–1533 (2017)

    Google Scholar 

  13. Gong, Z., Liu, C., Teo, K.L., Wang, S., Wu, Y.: Numerical solution of free final time fractional optimal control problems. Appl. Math. Comput. 405, 126270 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Gong, Z., Liu, C., Teo, K.L., Yi, X.: Optimal control of nonlinear fractional systems with multiple pantograph-delays. Appl. Math. Comput. 425, 127094 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Heydari, M.H., Razzaghi, M.: A new class of orthonormal basis functions: application for fractional optimal control problems. Int. J. Syst. Sci. 53, 240–252 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Heydari, M.H., Tavakoli, R., Razzaghi, M.: Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative. Int. J. Syst. Sci. 53, 2694–2708 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Jafari, H., Ganji, R.M., Sayevand, K., Baleanu, D.: A numerical approach for solving fractional optimal control problems with mittag-leffler kernel. J. Vib. Control 28, 2596–2606 (2022)

    MathSciNet  Google Scholar 

  18. Kamocki, R.: On the existence of optimal solutions to fractional optimal control problems. Appl. Math. Comput. 235, 94–104 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: A numerical solution for fractional optimal control problems via Bernoulli polynomials. J. Vib. Control 22, 3889–3903 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Li, B., Yu, C., Teo, K.L., Duan, G.R.: An exact penalty function method for continuous inequality constrained optimal control problem. J. Optim. Theory Appl. 151, 260–291 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Li, W., Wang, S., Rehbock, V.: Numerical solution of fractional optimal control. J. Optim. Theory Appl. 180, 556–573 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Liu, C., Gong, Z., Teo, K.L., Wang, S.: Optimal control of nonlinear fractional-order systems with multiple time-varying delays. J. Optim. Theory Appl. 193, 856–876 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Liu, C., Gong, Z., Wang, S., Teo, K.L.: Numerical solution of delay fractional optimal control problems with free terminal time. Optim. Lett. (2022). https://doi.org/10.1007/s11590-022-01926-1

    Article  Google Scholar 

  24. Liu, C., Gong, Z., Yu, C., Wang, S., Teo, K.L.: Optimal control computation for nonlinear fractional time-delay systems with state inequality constraints. J. Optim. Theory Appl. 191, 83–117 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Luus, R.: Optimal control by dynamic programming using systemic reduction in grid size. Int. J. Control 51, 995–1013 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Mu, P., Wang, L., Liu, C.: A control parameterization method to solve the fractional-order optimal control problem. J. Optim. Theory Appl. 187, 234–247 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer-Verlag, New York (2006)

    MATH  Google Scholar 

  28. Rabiei, K., Ordokhani, Y.: Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems. Appl. Math. 63, 541–567 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Samko, S.G., Kilbas, A.A., Marchev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Wiley-Interscience, New York (1993)

    Google Scholar 

  30. Singh, A., Mehra, M.: Wavelet collocation method based on Legendre polynomials and its application in solving the stochastic fractional integro-differential equations. J. Comput. Sci. 51, 101342 (2021)

    MathSciNet  Google Scholar 

  31. Singh, H., Srivastava, H.M., Nieto, J.J.: Handbook of Fractional Calculus for Engineering and Science. CRC Press, Boca Raton (2022)

    Google Scholar 

  32. Sweilam, N.H., Al-Mekhlafi, S.M., Assiri, T., Atangana, A.: Optimal control for cancer treatment mathematical model using Atangana-Baleanu-Caputo fractional derivative. Adv. Differ. Equ. 2020, 334 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Tajadodi, H., Khan, A., Gómez-Aguilar, J.F., Khan, H.: Optimal control problems with Atangana-Baleanu fractional derivative. Optim. Control Appl. Methods 42, 96–106 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Tang, X., Shi, Y., Wang, L.: A new framework for solving fractional optimal control problems using fractional pseudospectral methods. Automatica 78, 333–340 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Teo, K.L., Li, B., Yu, C., Rehbock, V.: Applied and Computational Optimal Control: A Control Parameterization Approach. Springer, Cham (2021)

    MATH  Google Scholar 

  36. Tricaud, C., Chen, Y.: An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59, 1644–1655 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Tunç, O., Atan, ö, Tunç, C., Yao, J.: Qualitative analyses of integro-fractional differential equations with Caputo derivatives and retardations via the Lyapunov-Razumikhin method. Axioms 10, 58 (2021)

    Google Scholar 

  38. Wang, S., Li, W., Liu, C.: On necessary optimality conditions and exact penalization for a constrained fractional optimal control problem. Optim. Control Appl. Methods 43, 1096–1108 (2022)

    MathSciNet  Google Scholar 

  39. Yari, A.: Numerical solution for fractional optimal control problems by Hermite polynomials. J. Vib. Control 27, 698–716 (2020)

    MathSciNet  Google Scholar 

  40. Zafar, Z., Zaib, S., Hussain, M., Tunç, C., Javeed, S.: Analysis and numerical simulation of tuberculosis model using different fractional derivatives. Chaos Solitons Fractals 160, 112202 (2022)

    MathSciNet  Google Scholar 

  41. Zeng, S.D., Migórski, S., Khan, A.A.: Nonlinear quasi-hemivariational inequalities: existence and optimal control. SIAM J. Control. Optim. 59, 1246–1274 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Zeng, S.D., Migórski, S., Liu, Z.H.: Well-posedness, optimal control and sensitivity analysis for a class of differential variational-hemivariational inequalities. SIAM J. Optim. 31, 2829–2862 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The support of the National Natural Science Foundation of China (Grants 12271307 and 12271335) and the Fundamental Research Grant Scheme of Malaysia (Grant FRGS/1/2021/STG06/SYUC/03/1) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongyang Liu.

Additional information

Communicated by Jen-Chih Yao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yu, C., Gong, Z. et al. Numerical Computation of Optimal Control Problems with Atangana–Baleanu Fractional Derivatives. J Optim Theory Appl 197, 798–816 (2023). https://doi.org/10.1007/s10957-023-02212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02212-5

Keywords

Mathematics Subject Classification

Navigation