Abstract
In this paper, we first extend the concept of non-degenerate matrices to tensors and we then study the finiteness properties of the solution set of non-degenerate tensor complementarity problems. When the involving tensor in the tensor complementarity problem is a positive linear combination of rank-one symmetric tensors, we show that the solution set of the tensor complementarity problem is convex if the underlying tensor is positive semidefinite, and the tensor complementarity problem has the globally uniqueness solvable property if the underlying tensor is positive definite. Finally, we prove that a symmetric P tensor with an additional condition has the globally uniqueness solvable property.
Similar content being viewed by others
References
Bai, X., Huang, Z., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)
Balaji, R., Palpandi, K.: Positive definite and Gram tensor complementarity problems. Optim. Lett. 12, 639–648 (2018)
Chang, K.C., Pearson, K., Zhang, T.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6(2), 507–520 (2008)
Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168(2), 475–487 (2016)
Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)
Comon, P., Golub, G., Lim, L.-H., Murrain, B.: Symmetric tensors and symmetric tensor rank. SIAM. J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)
Ding, W., Qi, L., Wei, Y.: M-tensors and nonsingular M-tensors. Linear Algebra Appl. 439(10), 3264–3278 (2013)
Ding, W., Luo, Z., Qi, L.: P-Tensors, \(P_0\)-Tensors, and their applications. Linear Algebra Appl. 555, 336–354 (2018)
Facchinei, F., Pang, J.-S.: Finite Dimensional Variational Inequality and Complementarity Problems, vol. I and II. Springer, Berlin (2003)
Gowda, M.S., Luo, Z., Qi, L., Xiu, N.: Z-tensors and complementarity problems (2015). arXiv:1510.07933
Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. Ser. B 48, 161–220 (1990)
Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927)
Hu, S., Huang, Z.-H., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50, 508–531 (2013)
Huang, Z.H., Qi, L.: Tensor complementarity problems-part I: basic theory. J. Optim. Theory Appl. 183, 1–23 (2019)
Huang, Z.H., Qi, L.: Tensor complementarity problems-part III: applications. J. Optim. Theory Appl. 183, 771–791 (2019)
Kolda, T.G., Bader, B.D.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)
Qi, L., Huang, Z.H.: Tensor complementarity problems-part II: solution methods. J. Optim. Theory Appl. 183, 365–385 (2019)
Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Springer, Singapore (2018)
Shao, J., You, L.: On some properties of three different types of triangular blocked tensors. Linear Algebra Appl. 511, 110–140 (2016)
Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)
Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)
Song, Y., Yu, G.: Properties of solution set of tensor complementarity problems. J. Optim. Theory Appl. 170, 85–96 (2016)
Acknowledgements
The authors are very thankful to the anonymous referees for their useful comments and valuable suggestions which helped us to improve this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Liqun Qi.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Palpandi, K., Sharma, S. Tensor Complementarity Problems with Finite Solution Sets. J Optim Theory Appl 190, 951–965 (2021). https://doi.org/10.1007/s10957-021-01917-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-021-01917-9
Keywords
- Tensors
- Non-degenerate tensors
- Sum of rank-one tensors
- Positive definite tensors
- Complementarity problems