[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Asymptotic Solution of a Singularly Perturbed Optimal Problem with Integral Constraint

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Using the so-called direct scheme method, an asymptotic expansion of n-th order to the solution of a class of singularly perturbed linear-quadratic optimal problem with integral constraint on control is constructed. The expansion contains three type functions. Two of them are boundary layer functions in the vicinities of two fixed end-points, and the remain is regular function. A numerical example is represented to illustrate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Belokopytov, S.V., Dmitriev, M.G.: Direct scheme in optimal control problems with fast and slow motions. Syst. Control Lett. 8(2), 129–135 (1986)

    Article  MathSciNet  Google Scholar 

  2. Danilin, A.R.: Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint. Proc. Steklov Inst. Math. 291, 66–76 (2015)

    Article  MathSciNet  Google Scholar 

  3. Eckhaus, W.: Asymptotic Analysis of Singular Perturbations. North-Holland (1979)

  4. Fedoryuk, M.V.: Asymptotic Analysis for Linear Ordinary Differential Equations. Springer, Berlin (1993)

    MATH  Google Scholar 

  5. Freedman, M.I., Granoff, B.: Formal asymptotic solution of a singularly perturbed nonlinear optimal control problem. J. Optim. Theory Appl. 19, 301–325 (1976)

    Article  MathSciNet  Google Scholar 

  6. Friedrichs, K.O., Wasow, W.: Singular perturbations of nonlinear oscillations. Duke Math. J. 13, 367–381 (1946)

    Article  MathSciNet  Google Scholar 

  7. Hoai, N.T.: Asymptotic solution of a singularly perturbed linear-quadratic problem in critical case with cheap control. J. Optim. Theory Appl. 175(2), 324–340 (2017)

    Article  MathSciNet  Google Scholar 

  8. Kadalbajoo, M.K., Patidar, K.C.: A survey of numerical techniques for solving singularly perturbed ordinary differential equations. Appl. Math. Comput. 130(2–3), 457–510 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Kadalbajoo, M.K., Reddy, Y.N.: Asymptotic and numerical analysis of singular perturbation problems: a survey. Appl. Math. Comput. 30(3), 223–259 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Kalaba, R., Spingarn, K.: Automatic solution of optimal control problems III: differential and integral constraints. IEEE Control Syst. Maga. 4(1), 3–8 (1984)

    Article  Google Scholar 

  11. Kokotovic, P.V.: Applications of singular perturbation techniques to control problems. SIAM Rev. 26(4), 501–550 (1984)

    Article  MathSciNet  Google Scholar 

  12. Kokotovic, P.V., O’Malley, R.E., Jr., Sannuti, P.: Singular perturbations and order reduction in control theory—an overview. Automatica 12, 123–132 (1976)

  13. Kokotovic, P.V., Sannuti, P.: Singular perturbation method for reducing the model order in optimal control design. IEEE Trans. Autom. Control 13, 377–384 (1968)

    Article  Google Scholar 

  14. Kurina, G.A., Dmitriev, M.G.: Singular perturbations in control problems. Autom. Remote Control 67, 1–43 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kurina, G.A., Dmitriev, M.G., Naidu, D.S.: Discrete singularly perturbed control problems (a survey). Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 24(5), 335–370 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Kurina, G.A., Nguyen, T.H.: Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients. Comput. Math. Math. Phys. 52(4), 524–547 (2012)

    Article  MathSciNet  Google Scholar 

  17. Kurina, G.A., Zhou, Y.: Decomposition of linear-quadratic optimal control problems for two-steps systems. Russ. Doklady Akad. Nauk. 437(1), 28–30 (2011)

    MATH  Google Scholar 

  18. Naidu, D.S.: Singular perturbations and time scales in control theory and applications: an overview. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9, 233–278 (2002)

    Article  MathSciNet  Google Scholar 

  19. O’Malley, R.E., Jr.: Boundary layer methods for certain nonlinear singularly perturbed optimal control. J. Math. Anal. Appl. 45(2), 468–484 (1974)

  20. O’Malley, R.E., Jr.: Singular Perturbations Methods for Ordinary Differential Equations. Springer, Berlin (1991)

  21. O’Malley, R.E., Jr.: Historical Developments in Singular Perturbations. Springer, New York (2014)

  22. O’Malley, R.E., Jr., Flaherty, J.E.: Analytical and numerical methods for nonlinear singular singularly perturbed initial value problems. SIAM J. Appl. Math. 38(2), 225–248 (1980)

  23. O’Malley, R.E., Jr., Jameson, A.: Singular perturbations and singular arcs–part I. IEEE Trans. Autom. Control 20(2), 218–226 (1975)

  24. Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems. Springer, Berlin (1994)

    MATH  Google Scholar 

  25. Sannuti, P.: Asymptotic series of singularly perturbed optimal control problem. Automatica 10, 183–194 (1974)

    Article  MathSciNet  Google Scholar 

  26. Shinar, J.: On applications of singular perturbation techniques in nonlinear optimal control. Automatica 19(12), 203–211 (1983)

    Article  MathSciNet  Google Scholar 

  27. Tikhonov, A.: On the dependence of the solutions of differential equations on a small parameter. Math. Sb. 22, 193–204 (1948)

    MathSciNet  Google Scholar 

  28. Vasil’eva, A.B.: Differential equations containing a small parameter. Math. Sb. 31(73), 587–644 (1952)

  29. Vasil’eva, A.B.: Asymptotic formulas for the solution of systems of ordinary differential equations containing parameters of various orders of smallness. Dokl. Akad. Nauk. SSSR 128(6), 1110–1113 (1959)

  30. Vasil’eva, A.B., Bagirova, N.K.: The asymptotic behavior of the solution of differential equations containing a small parameter attached to the highest derivatives determined by nrious supplementary conditions. Uchenye Zap. Azerb., Univ. Ser. Fiz. Mat. Khim. Nauk. 4, 3–17 (1962)

  31. Vasil’eva, A.B., Butuzov, V.F.: Asymptotic Expansions of Solutions to Singularly Perturbed Equations. Nauka, Moscow (1973). (In Russian)

  32. Vasil’eva, A.B., Butuzov, V.F., Kalachev, L.V.: The boundary function method for singular perturbation problems. SIAM Stud. Appl. Math, Phila (1995)

  33. Vasil’eva, A.B., Dmitriev, M.G.: Singular perturbations in problems of optimal control. J. Sov. Math. 34(3), 1579–1629 (1986)

  34. Vigor-Aguiar, J., Natesan, S.: An efficient numerical method for singular perturbation problems. J. Comput. Appl. Math. 192, 132–141 (2006)

    Article  MathSciNet  Google Scholar 

  35. Vishik, M.I., Lyusternik, L.A.: Regular degeneration and boundary layer for linear differential equations with a small parameter. Am. Math. Soc. Trasl. 20, 239–364 (1961)

    MathSciNet  MATH  Google Scholar 

  36. Wasow, W.: On boundary layer problems in the theory of ordinary differential equations. Doctoral Dissertation, New York Universty (1941)

Download references

Acknowledgements

The author thanks the anonymous referees for numerous critical and constructive remarks that helped to improve the text of the paper. This research has been done under the Research Project QG.21.03 “SOME PROBLEMS ON THE STABILITY AND CONTROL OF SINGULAR SYSTEMS” of Vietnam National University, Hanoi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Hoai Nguyen.

Additional information

Communicated by Aram Arutyunov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

For convenient, we use the notation

$$\begin{aligned} N_i(z_1(\cdot ), z_2(\cdot , \varepsilon ), t)= & {} \langle x_1(\cdot ), [W(t,\varepsilon )x_2(\cdot ,\varepsilon )]_i \rangle + \langle u_1(\cdot ), [R(t,\varepsilon )u_2(\cdot ,\varepsilon )]_i \rangle \\ M_i(z_1(\cdot , \varepsilon ), z_2(\cdot , \varepsilon ), t, k)= & {} \langle [x_1(\cdot , \varepsilon )]_{k-i}, [W(t,\varepsilon )x_2(\cdot ,\varepsilon )]_i \rangle \\&+ \,\langle [u_1(\cdot , \varepsilon )]_{k-i}, [R(t,\varepsilon )u_2(\cdot ,\varepsilon )]_i \rangle . \end{aligned}$$

Appendix A: The Construction of \(J_{2n}\)

The term \(J_{2n}^*\) is

$$\begin{aligned} J_{2n}^*= & {} \overline{J}_{2n} + \int _0^T(\frac{1}{2}F(\overline{z}_n(t), \overline{z}_n(t), t) + \langle \overline{x}_n, [W^1(t,\varepsilon )\overline{x}(t,\varepsilon )]_n\rangle \\&+\,\langle \overline{u}_n, [R^1(t,\varepsilon )\overline{u}(t,\varepsilon )]_n\rangle )\,\mathrm{d}t + \Pi \overline{J}_{2n-1} + Q\overline{J}_{2n-1}. \end{aligned}$$

Here,

$$\begin{aligned} \overline{J}_{2n}&= \int _0^T\left( \sum _{i=0}^{n-1}N_i(\overline{z}_{2n-i} (t),\overline{z}(t,\varepsilon ), t)\right) \,\mathrm{d}t, \\ \Pi \overline{J}_{2n-1}&= \int _0^{+\infty }\left( \sum _{i=0}^{n-1}M_i(\overline{z}(\tau \varepsilon , \varepsilon ), \Pi z(\tau ,\varepsilon ), \tau \varepsilon , 2n-1)\right) \,\mathrm{d}\tau \\&\quad + \, \int _0^{+\infty }\left( \sum _{i=0}^{n-1}N_i(\Pi _{2n-1-i}z(\tau ), \overline{z}(\tau \varepsilon , \varepsilon ), \tau \varepsilon )\right) \,\mathrm{d}\tau \\&\quad + \,\int _0^{+\infty }\left( \sum _{i=0}^{n-1}N_i(\Pi _{2n-1-i}z(\tau ),\Pi z(\tau , \varepsilon ), \tau \varepsilon )\right) \,\mathrm{d}\tau , \end{aligned}$$

the term \(Q\overline{J}_{2n-1}\) is obtained from the formula for \(\Pi \overline{J}_{2n-1}\) replacing the interval of integration over \([0,+\infty ]\) by \((-\infty , 0]\), the symbol \(\Pi \) by Q and the arguments \(\tau \varepsilon \) and \(\tau \) by \(T + \sigma \varepsilon \) and \(\sigma \), respectively.

Here and further, after the symbol \(\sim \) we mean the construction of the considered expression after omitting known summands.

We use (3.27), (3.26), (3.5), the technique of integration by parts, to construct \(\overline{J}_{2n}\). It follows that

$$\begin{aligned} \overline{J}_{2n}\sim & {} \sum _{i=0}^{n-1}\langle \overline{\psi }_i(t), \overline{x}_{2n-1-i}(t)\rangle |_0^T - \int _0^T(\langle \overline{x}_n, [A^1(t,\varepsilon )'\overline{\psi }_{n-1}(t,\varepsilon )]_n \nonumber \\&+ \,\frac{\mathrm{d}\overline{\psi }_{n-1}}{\mathrm{d}t}\rangle +\langle \overline{u}_n, [B^1(t,\varepsilon )'\overline{\psi }_{n-1}(t,\varepsilon )]_n\rangle )\mathrm{d}t\nonumber \\&+ \,\sum _{i=0}^{n-1}\overline{\alpha }_i\int _0^T\left( \sum _{j=0}^{n-1-i} [K(t,\varepsilon )]_j[\overline{u}(t,\varepsilon )]_{2n-i-j}\right) \,\mathrm{d}t. \end{aligned}$$
(A.1)

Using (3.36), (3.35), (3.31), the property (3.2), Eq. (3.5) with appropriate times of differentiation at \(t = 0\), we obtain the construction for the first integral in \(\Pi \overline{J}_{2n-1}\)

$$\begin{aligned} -\sum _{i=0}^{n-1}\langle \overline{x}_{2n-1-i}(0), \Pi _{i}\psi (0)\rangle . \end{aligned}$$
(A.2)

Using relations (3.26), (3.27) at \(t = 0\), and their appropriate times of differentiation at \(t = 0\) (note that \(\overline{\alpha }_i\), \(i = 0, 1, ..., n-1,\) are constants), the technique of integration by parts, the property (3.2), we obtain the construction for the second integral in \(\Pi \overline{J}_{2n-1}\)

$$\begin{aligned}&- \sum _{i=0}^{n-1}\langle \overline{\psi }_i(0), \Pi _{2n-1-i}x(0)\rangle \nonumber \\&\quad +\, \sum _{i=0}^{n-1}\overline{\alpha }_i\int _0^{+\infty } \left( \sum _{j=0}^{n-1-i}[K(\tau \varepsilon , \varepsilon )]_j[\Pi u(\tau ,\varepsilon )]_{2n-i-j-1}\right) \,\mathrm{d}\tau . \end{aligned}$$
(A.3)

Using (3.35), (3.36), (3.31), the property (3.2), we get the construction for the third integral in \(\Pi \overline{J}_{2n-1}\)

$$\begin{aligned} -\sum _{i=0}^{n-1}\langle \Pi _i\psi (0), \Pi _{2n-1-i}x(0)\rangle . \end{aligned}$$
(A.4)

Analogously [see (A.2)–(A.4)], we obtain the construction for \(Q\overline{J}_{2n-1}\)

$$\begin{aligned} Q\overline{J}_{2n-1}\sim & {} \sum _{i=0}^{n-1}\langle \overline{x}_{2n-1-i}(T), Q_{i}\psi (0)\rangle \;+ \sum _{i=0}^{n-1}\langle \overline{\psi }_i(T), Q_{2n-1-i}x(0)\rangle \nonumber \\&+ \, \sum _{i=0}^{n-1}\overline{\alpha }_i\int _{-\infty }^{0} \left( \sum _{j=0}^{n-1-i}[K(T+\sigma \varepsilon , \varepsilon )]_j[Qu(\sigma ,\varepsilon )]_{2n-i-j-1}\right) \,\mathrm{d}\sigma \nonumber \\&+ \,\sum _{i=0}^{n-1}\langle Q_i\psi (0), Q_{2n-1-i}x(0)\rangle . \end{aligned}$$
(A.5)

In view of the form of coefficients \(E_{i}\), \(i \ge 0\), in (3.4)

$$\begin{aligned} E_{i}= & {} \int _0^T[K(t,\varepsilon )\overline{u}(t,\varepsilon )]_{i}\,\mathrm{d}t \nonumber \\&+\, \int _0^{+\infty }[K(\tau \varepsilon , \varepsilon )\Pi u(\tau ,\varepsilon )]_{i-1}\,\mathrm{d}\tau + \int _{-\infty }^0[K(T+\sigma \varepsilon , \varepsilon )Q u(\sigma ,\varepsilon )]_{i-1}\,\mathrm{d}\sigma ,\nonumber \\ \end{aligned}$$
(A.6)

and using the conditions (3.32), (3.37), from (A.1) to (A.5), after neglecting known summands, we obtain the construction for \(J_{2n}\) denoted by \(\overline{J}_{n}(\overline{u}_n)\), which has the form (3.24).

Appendix B: The Construction of \(J_{2n+1}\)

The term \(J_{2n+1}^*\) is

$$\begin{aligned} J_{2n+1}^*= & {} \overline{J}_{2n+1} + \int _0^{+\infty }\Bigg (\frac{1}{2}F(\Pi _nz(\tau ), \Pi _nz(\tau ),0) \\&+\, \langle \Pi _nx, [W^1(\tau \varepsilon , \varepsilon )\Pi x(\tau , \varepsilon )]_n \rangle + \langle \Pi _nu, [R^1(\tau \varepsilon , \varepsilon )\Pi u(\tau ,\varepsilon )]_n \rangle \Bigg )\,\mathrm{d}\tau \\&+\, \int _{-\infty }^0(\frac{1}{2}F(Q_nz(\sigma ), Q_nz(\sigma ), T) + \langle Q_nx, [W^1(T+\sigma \varepsilon , \varepsilon )Q x(\sigma ,\varepsilon )]_n \rangle \\&+\,\langle Q_nu, [R^1(T+\sigma \varepsilon , \varepsilon ) Q u(\sigma ,\varepsilon )]_n \rangle )d\sigma + \Pi \overline{J}_{2n} + Q\overline{J}_{2n}, \end{aligned}$$

where

$$\begin{aligned} \overline{J}_{2n+1}= & {} \int _0^T\left( \sum _{i=0}^{n} N_i(\overline{z}_{2n+1-i}(t), \overline{z}(t,\varepsilon ),t)\right) \,\mathrm{d}t,\\ \Pi \overline{J}_{2n}= & {} \int _0^{+\infty }\left( \sum _{i=0}^{n-1}M_i(\overline{z}(\tau \varepsilon , \varepsilon ), \Pi z(\tau ,\varepsilon ), \tau \varepsilon , 2n)\right) \,\mathrm{d}\tau \\&+\, \int _0^{+\infty }\left( \sum _{i=0}^{n}N_i(\Pi _{2n-i}z(\tau ), \overline{z}(\tau \varepsilon ,\varepsilon ), \tau \varepsilon )\right) \,\mathrm{d}\tau \\&+\, \int _0^{+\infty }\left( \sum _{i=0}^{n-1}N_i(\Pi _{2n-i}z(\tau ), \Pi z(\tau , \varepsilon ),\tau \varepsilon )\right) \,\mathrm{d}\tau , \end{aligned}$$

and the term \(Q\overline{J}_{2n}\) is obtained from the formula for \(\Pi \overline{J}_{2n}\) replacing the interval of integration over \([0,+\infty ]\) by \((-\infty , 0]\), the symbol \(\Pi \) by Q and the arguments \(\tau \varepsilon \) and \(\tau \) by \(T+\sigma \varepsilon \) and \(\sigma \), respectively.

Using (3.27), (3.26), (3.25), the technique of integration by parts, we obtain the construction for \(\overline{J}_{2n+1}\)

$$\begin{aligned} \overline{J}_{2n+1}\sim & {} \sum _{i=0}^{n}\langle \overline{\psi }_i(t), \overline{x}_{2n-i}(t)\rangle |_0^T \nonumber \\&+\,\sum _{i=0}^{n}\overline{\alpha }_i\int _0^T \left( \sum _{j=0}^{n-i}[K(t,\varepsilon )]_j[\overline{u}(t,\varepsilon )]_{2n+1-i-j}\right) \,\mathrm{d}t. \end{aligned}$$
(B.1)

Using (3.36), (3.35), (3.31), the technique of integration by parts, the condition (3.2), we have the construction for the first integral in \(\Pi \overline{J}_{2n}\)

$$\begin{aligned} -\sum _{i=0}^{n-1}\langle \overline{x}_{2n-i}(0), \Pi _i\psi (0)\rangle . \end{aligned}$$
(B.2)

Using (3.27), (3.26) at \(t = 0\) and equations that follow from (3.27), (3.26) with appropriate time of differentiation at \(t = 0\), the relations (3.28), (3.31), the technique of integration by parts and the property (3.2), we obtain the construction for the second integral in \(\Pi \overline{J}_{2n}\)

$$\begin{aligned}&-\sum _{i=0}^{n}\langle \overline{\psi }_i(0), \Pi _{2n-i}x(0)\rangle \nonumber \\&\quad +\, \sum _{i=0}^{n} \overline{\alpha }_i \int _0^{+\infty }\left( \sum _{j=0}^{n-i}[K(\tau \varepsilon , \varepsilon )]_j[\Pi u(\tau ,\varepsilon )]_{2n-i-j}\right) \,\mathrm{d}\tau . \end{aligned}$$
(B.3)

Using (3.36), (3.35), (3.31), the technique of integration by parts, the property (3.2), we obtain the construction for the last integral in \(\Pi \overline{J}_{2n}\)

$$\begin{aligned}&-\sum _{i=0}^{n-1}\langle \Pi _i\psi (0), \Pi _{2n-i}x(0)\rangle \nonumber \\&\quad -\,\int _0^{+\infty }\langle \Pi _nx, [A^1(\tau \varepsilon , \varepsilon ) '\Pi _{n-1}\psi (\tau ,\varepsilon )]_n \rangle \,\mathrm{d}\tau . \end{aligned}$$
(B.4)

Analogously [see (B.2)–(B.4)], we get the construction for \(Q\overline{J}_{2n}\)

$$\begin{aligned} Q\overline{J}_{2n}\sim & {} \sum _{i=0}^{n-1}\langle \overline{x}_{2n-i}(T), Q_i\psi (0)\rangle + \sum _{i=0}^{n}\langle \overline{\psi }_i(T), Q_{2n-i}x(0)\rangle \nonumber \\&+\, \sum _{i=0}^{n}\overline{\alpha }_i\int _{-\infty }^0 \left( \sum _{j=0}^{n-i}[K(T+\sigma \varepsilon , \varepsilon )]_j[Qu(\sigma , \varepsilon )]_{2n-i-j}\right) \,\mathrm{d}\sigma \nonumber \\&+ \, \sum _{k=0}^{n-1}\langle Q_k\psi (0), Q_{2n-k}x(0)\rangle \nonumber \\&- \,\int _{-\infty }^0\langle Q_nx, [A^1(T + \sigma \varepsilon , \varepsilon )'Q_{n-1}\psi (\sigma ,\varepsilon )]_n \rangle \,\mathrm{d}\sigma . \end{aligned}$$
(B.5)

Using the conditions (3.32), (3.37), the coefficients \(E_i\), \(i = 0, 1, ..., 2n+1\), in (A.6), from (B.1) to (B.5), after neglecting known summands, we obtain the construction for \(J_{2n+1}\) which is denoted as \(\Pi _nJ(\Pi _nu) + Q_nJ(Q_nu)\) where the first and second terms have the forms (3.29) and (3.30), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H. Asymptotic Solution of a Singularly Perturbed Optimal Problem with Integral Constraint. J Optim Theory Appl 190, 931–950 (2021). https://doi.org/10.1007/s10957-021-01916-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01916-w

Keywords

Mathematics Subject Classification

Navigation