Abstract
In this paper, we study the sparsity-adapted complex moment-Hermitian sum of squares (moment-HSOS) hierarchy for complex polynomial optimization problems, where the sparsity includes correlative sparsity and term sparsity. We compare the strengths of the sparsity-adapted complex moment-HSOS hierarchy with the sparsity-adapted real moment-SOS hierarchy on either randomly generated complex polynomial optimization problems or the AC optimal power flow problem. The results of numerical experiments show that the sparsity-adapted complex moment-HSOS hierarchy provides a trade-off between the computational cost and the quality of obtained bounds for large-scale complex polynomial optimization problems.
Similar content being viewed by others
Notes
By a chord, we means an edge that joins two nonconsecutive nodes in a cycle.
Even if CPOP (1.1) is not a QCQP, this operation could also strengthen the relaxation.
References
Agler, J., Helton, W., McCullough, S., Rodman, L.: Positive semidefinite matrices with a given sparsity pattern. Linear Algebra Appl. 107, 101–149 (1988)
Aittomaki, T., Koivunen, V.: Beampattern optimization by minimization of quartic polynomial. In: Piscataway, N.J. (ed.) 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 437–440. IEEE (2009)
Aubry, A., De Maio, A., Jiang, B., Zhang, S.: Ambiguity function shaping for cognitive radar via complex quartic optimization. IEEE Trans. Signal Process. 61(22), 5603–5619 (2013)
Babaeinejadsarookolaee, S., Birchfield, A., Christie, R.D., Coffrin, C., DeMarco, C., Diao, R., Ferris, M., Fliscounakis, S., Greene, S., Huang, R. et al.: The power grid library for benchmarking AC optimal power flow algorithms. (2019). arXiv preprint arXiv:1908.02788
Bienstock, D., Escobar, M., Gentile, C., Liberti, L.: Mathematical programming formulations for the alternating current optimal power flow problem. 4OR 18(3), 249–292 (2020)
Blair, J.R., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation. The IMA Volumes in Mathematics and its Applications, vol. 56, pp. 1–29. Springer, New York, NY (1996)
Bodlaender, H.L., Koster, A.M.: Treewidth computations I. Upper bounds. Inf. Comput. 208(3), 259–275 (2010)
Bromberger, S., Fairbanks, J.: and other contributors. JuliaGraphs/LightGraphs.jl: an optimized graphs package for the Julia programming language (2017)
Bugarin, F., Henrion, D., Lasserre, J.B.: Minimizing the sum of many rational functions. Math. Program. Comput. 8(1), 83–111 (2016)
Chen, T., Lasserre, J.-B., Magron, V., Pauwels, E.: Semialgebraic optimization for bounding Lipschitz constants of Relu networks. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Proceeding of Advances in Neural Information Processing Systems, vol. 33 (2020)
Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)
D’Angelo, J.P., Putinar, M.: Polynomial optimization on odd-dimensional spheres. In: Emerging Applications of Algebraic Geometry, pp. 1–15. Springer (2009)
Fogel, F., Waldspurger, I., d’Aspremont, A.: Phase retrieval for imaging problems. Math. Program. Comput. 8(3), 311–335 (2016)
Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H.: Positive definite completions of partial Hermitian matrices. Linear Algebra Appl. 58, 109–124 (1984)
Hilling, J.J., Sudbery, A.: The geometric measure of multipartite entanglement and the singular values of a hypermatrix. J. Math. Phys. 51(7), 072102 (2010)
Josz, C., Molzahn, D.K.: Moment/sum-of-squares hierarchy for complex polynomial optimization. (2015). arXiv preprint arXiv:1508.02068
Josz, C., Molzahn, D.K.: Lasserre hierarchy for large scale polynomial optimization in real and complex variables. SIAM J. Optim. 28(2), 1017–1048 (2018)
Klep, I., Magron, V., Povh, J.: Sparse noncommutative polynomial optimization. Math. Program. 2021, 1–41 (2021)
Lasserre, J.-B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)
Magron, V.: Interval enclosures of upper bounds of roundoff errors using semidefinite programming. ACM Trans. Math. Softw. 44(4), 1–18 (2018)
Magron, V., Constantinides, G., Donaldson, A.: Certified roundoff error bounds using semidefinite programming. ACM Trans. Math. Softw. 43(4), 1–34 (2017)
Magron, V., Wang, J.: TSSOS: a Julia library to exploit sparsity for large-scale polynomial optimization. In: The 16th Effective Methods in Algebraic Geometry Conference (2021). https://puremath.no/Contributed%20MEGA/papers/MEGA_2021_paper_17.pdf
Mariere, B., Luo, Z.-Q., Davidson, T.N.: Blind constant modulus equalization via convex optimization. IEEE Trans. Signal Process. 51(3), 805–818 (2003)
Marshall, M.: Representations of non-negative polynomials, degree bounds and applications to optimization. Can. J. Math. 61(1), 205–221 (2009)
Mosek, A.: The MOSEK optimization Suite. Version 9.0 (2019)
Toker, O., Ozbay, H.: On the complexity of purely complex \(\mu \) computation and related problems in multidimensional systems. IEEE Trans. Autom. Control 43(3), 409–414 (1998)
Vandenberghe, L., Andersen, M..S., et al.: Chordal graphs and semidefinite optimization. Found. Trends® Optim. 1(4), 241–433 (2015)
Vreman, N., Pazzaglia, P., Wang, J., Magron, V., Maggio, M.: Stability of control systems under extended weakly-hard constraints. (2021). arXiv preprint arXiv:2101.11312
Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)
Wang, J.: ChordalGraph: A Julia Package to Handle Chordal Graphs (2020). https://github.com/wangjie212/ChordalGraph
Wang, J., Maggio, M., Magron, V.: SparseJSR: A fast algorithm to compute joint spectral radius via sparse SOS decompositions. In: 2021 American Control Conference (ACC), pp. 2254–2259. IEEE (2021)
Wang, J., Magron, V.: Exploiting term sparsity in noncommutative polynomial optimization. Comput. Optim. Appl. 80(2), 483–521 (2021)
Wang, J., Magron, V., Lasserre, J.-B.: Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension. SIAM J. Optim. 31(1), 114–141 (2021)
Wang, J., Magron, V., Lasserre, J.-B.: TSSOS: A moment-SOS hierarchy that exploits term sparsity. SIAM J. Optim. 31(1), 30–58 (2021)
Wang, J., Magron, V., Lasserre, J.-B., Mai, N.H.A.: CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization. (2020). arXiv:2005.02828
Zhou, Q., Marecek, J.: Proper learning of linear dynamical systems as a non-commutative polynomial optimisation problem (2020). arXiv:2002.01444
Zhou, Q., Marecek, J., Shorten, R.N.: Fairness in forecasting and learning linear dynamical systems. (2020). arXiv:2006.07315
Acknowledgements
Both authors were supported by the Tremplin ERC Stg Grant ANR-18-ERC2-0004-01 (T-COPS project). The second author was supported by the FMJH Program PGMO (EPICS project), as well as the PEPS2 Program (FastOPF project) funded by AMIES and RTE. This work has benefited from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Actions, Grant Agreement 813211 (POEMA) as well as from the AI Interdisciplinary Institute ANITI funding, through the French “Investing for the Future PIA3” program under the Grant agreement n\(^{\circ }\)ANR-19-PI3A-0004.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Vaithilingam Jeyakumar.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, J., Magron, V. Exploiting Sparsity in Complex Polynomial Optimization. J Optim Theory Appl 192, 335–359 (2022). https://doi.org/10.1007/s10957-021-01975-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-021-01975-z
Keywords
- Complex moment-HSOS hierarchy
- Correlative sparsity
- Term sparsity
- Complex polynomial optimization
- Optimal power flow