[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Second-Order Optimality Conditions for Constrained Optimization Problems with \(C^1\) Data Via Regular and Limiting Subdifferentials

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present the second-order point-based (necessary and sufficient) optimality conditions for nonlinear programming with continuously differentiable data, via the regular and limiting (Mordukhovich) second-order subdifferentials. The sharper results are obtained for \(C^{1,1}\) data. Also, we derive a second-order characterization for (strictly and strongly) pseudoconvex, continuously differentiable functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benko, M., Gfrerer, H., Mordukhovich, B.S.: Characterizations of tilt-stable minimizers in second-order cone programming. SIAM J. Optim. 29(4), 3100–3130 (2019)

    Article  MathSciNet  Google Scholar 

  2. Ben-Tal, A., Zowe, J.: Directional derivatives in nonsmooth optimization. J. Optim. Theory Appl. 47, 483–490 (1985)

    Article  MathSciNet  Google Scholar 

  3. Bernard, F., Thibault, L.: Prox-regular functions in Hilbert spaces. J. Math. Anal. Appl. 303(1), 1–14 (2005)

    Article  MathSciNet  Google Scholar 

  4. Borwein, J.M., Zhu, Q.J.: Techniques of variational analysis. Springer, New York (2005)

    MATH  Google Scholar 

  5. Bruckner, A.M.: Differentiation of Real Functions. 2nd ed., CRM Monograph Series 5, American Mathematical Society, Providence, RI (1994)

  6. Cambini, A., Martein, L.: Generalized Convexity and Optimality Conditions in Scalar and Vector Optimization. In: Hadjisavas, N., Komosi, S., Schaible, S. (eds.) Handbook of generalized convexity and generalized monotonicity, pp. 151-194. Springer, Series Nonconvex Optimization and Its Applications. Springer, New York (2005)

  7. Crouzeix, J.P.: Criteria for generalized convexity and generalized monotonicity in the differentiable case. Hadjisavas, N., Komlosi, S., Schaible, S. (eds.) Handbook of generalized convexity and generalized monotonicity, pp. 89-120. Springer, Series Nonconvex Optimization and Its Applications. Springer, New York (2005)

  8. Drusvyatskiy, D., Lewis, A.S.: Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential. SIAM J. Optim. 23(1), 256–267 (2013)

    Article  MathSciNet  Google Scholar 

  9. Drusvyatskiy, D., Mordukhovich, B.S., Nghia, T.T.A.: Second-order growth, tilt-stability, and metric regularity of the subdifferential. J. Convex Anal. 21, 1165–1192 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Fiacco, A.V., Mccormick, G.P.: Nonlinear Programming. Unconstrained Optimization Techniques. John Wiley, New York (1968)

    MATH  Google Scholar 

  11. Garg, K.M.: On nowhere monotone functions, III (Functions of first and second species). Rev. Math. Pures Appl. 8, 83–90 (1963)

    MathSciNet  MATH  Google Scholar 

  12. Georgiev, P.G., Zlateva, N.: Second-order subdifferentials of \(C^{1,1}\) functions and optimality conditions. Set Valued Anal. 4, 101–117 (1996)

    Article  MathSciNet  Google Scholar 

  13. Gfrerer, H., Mordukhovich, B.S.: Complete characterizations of tilt stability in nonlinear programming under weakest qualification conditions. SIAM J. Optim. 25(4), 2081–2119 (2015)

    Article  MathSciNet  Google Scholar 

  14. Ginchev, I., Ivanov, V.I.: Second-order optimality conditions for problems with \(C^1\) data. J. Math. Anal. Appl. 340(1), 646–657 (2008)

    Article  MathSciNet  Google Scholar 

  15. Hadjisavvas, N., Schaible, S.: Generalized monotone maps. In: Hadjisavvas, N., Komlosi, S., Schaible, S. (Eds.) Handbook of Generalized Convexity and Generalized Monotonicity, pp. 389-420. Springer, Series Nonconvex Optimization and Its Applications. Springer, New York (2005)

  16. Hiriart-Urruty, J.B., Strodiot, J.J., Nguyen, V.H.: Generalized Hessian matrix and second-order optimality conditions for problems with \(C^{1,1}\) data. Appl. Math Opt. 11, 43–56 (1984)

    Article  Google Scholar 

  17. Ioffe, A.D.: Necessary and sufficient conditions for a local minimum 3: Second-order conditions and augmented duality. SIAM J. Control Optim. 17, 266–288 (1979)

    Article  MathSciNet  Google Scholar 

  18. Ivanov, V.I.: Second-order optimality conditions for inequality constrained problems with locally Lipschitz data. Optim. Lett. 4, 597–608 (2010)

    Article  MathSciNet  Google Scholar 

  19. Jeyakumar, V., Luc, D.T.: Approximate Jacobian matrices for nonsmooth continuous maps and \(C^1\)-optimization. SIAM J. Control Optim. 36(5), 1815–1832 (1998)

    Article  MathSciNet  Google Scholar 

  20. Khanh, P.D., Phat, V.T.: Second-order characterizations of \(C^1\)-smooth robustly quasi- convex functions. Oper. Res. Lett. 46, 568–572 (2018)

    Article  MathSciNet  Google Scholar 

  21. Khanh, P.D., Phat, V.T.: Second-order characterizations of quasiconvexity and pseudoconvexity for differentiable functions with Lipschitzian derivatives. Optim. Lett. 14, 2413–2427 (2020)

    Article  MathSciNet  Google Scholar 

  22. Levitin, E.S., Miljutin, A.A., Osmolovskii, N.P.: On conditions for a local minimum in a problem with constraints. In: Mitjagin, B.S. (ed.) Mathematical Economics and Functional Analysis, pp. 139-202. Nauka, Moscow (1974) (In Russian.)

  23. Luc, D.T.: Second-order optimality conditions for problems with continuously differentiable data. Optimization 51(3), 497–510 (2002)

    Article  MathSciNet  Google Scholar 

  24. Luc, D.T.: Taylor’s formula for \(C^{k,1}\) functions. SIAM J. Optim. 5(3), 659–669 (1995)

    Article  MathSciNet  Google Scholar 

  25. Luc, D.T., Schaible, S.: Generalized monotone nonsmooth maps. J. Convex Anal. 3(2), 195–205 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Mangasarian, O.L.: Nonlinear programming. McGraw-Hill, New York (1969). Reprint, SIAM Classics in Applied Mathematics, vol. 10, Philadelphia (1994)

  27. Mordukhovich, B.S.: Sensitivity analysis in nonsmooth optimization. In: Field, D.A., Komkov, V. (eds.) Theoretical Aspects of Industrial Design, 58, pp. 32-42. SIAM Proceedings in Applied Mathematics, SIAM Publications, Philadelphia, PA (1992)

  28. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, New York (2018)

    Book  Google Scholar 

  29. Mordukhovich, B.S.: Variational Analysis and Generalized Differential I. II. Springer, New York (2006)

    Google Scholar 

  30. Mordukhovich, B.S., Nghia, T.T.A.: Second-order characterizations of tilt stability with applications to nonlinear programming. Math. Program. 149, 83–104 (2015)

    Article  MathSciNet  Google Scholar 

  31. Mordukhovich, B.S., Nghia, T.T.A.: Second-order variational analysis and characterizations of tilt-stable optimal solutions in infinite-dimensional spaces. Nonlinear Anal. 86, 159–180 (2013)

    Article  MathSciNet  Google Scholar 

  32. Mordukhovich, B.S., Outrata, J.V., Sarabi, M.E.: Full stability of locally optimal solution in second-order cone programming. SIAM J. Optim. 24(4), 1581–1613 (2014)

    Article  MathSciNet  Google Scholar 

  33. Mordukhovich, B.S., Rockafellar, R.T.: Second-order subdifferential calculus with applications to tilt stability in optimization. SIAM J. Optim. 22(3), 953–986 (2012)

    Article  MathSciNet  Google Scholar 

  34. Mordukhovich, B.S., Rockafellar, R.T., Sarabi, M.E.: Characterizations of full stability in constrained optimization. SIAM J. Optim. 23(3), 1810–1849 (2013)

    Article  MathSciNet  Google Scholar 

  35. Nadi, M.T., Zafarani, J.: Characterizations of quasiconvex and pseudoconvex functions by their second-order regular subdifferentials. J. Aust. Math. Soc. 109(2), 217–229 (2020)

    Article  MathSciNet  Google Scholar 

  36. Poliquin, R.A., Rockafellar, R.T.: Tilt stability of a local minimum. SIAM J. Optim. 8(2), 287–299 (1998)

    Article  MathSciNet  Google Scholar 

  37. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer Verlag, New York (1998)

    Book  Google Scholar 

  38. Schirotzek, W.: Nonsmooth Analysis. Springer, Berlin (2007)

    Book  Google Scholar 

  39. Wang, X.: Subdifferentiability of real functions. Real Anal. Exchange. 30(1), 137–171 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank reviewers and the Guest Editor for valuable remarks and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Zafarani.

Additional information

Communicated by Boris S. Mordukhovich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadi, M.T., Zafarani, J. Second-Order Optimality Conditions for Constrained Optimization Problems with \(C^1\) Data Via Regular and Limiting Subdifferentials. J Optim Theory Appl 193, 158–179 (2022). https://doi.org/10.1007/s10957-021-01890-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01890-3

Keywords

Navigation