[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the study of stochastic variational inequalities, the extragradient algorithms attract much attention. However, such schemes require two evaluations of the expected mapping at each iteration in general. In this paper, we present several variance-based single-call proximal extragradient algorithms for solving a class of stochastic mixed variational inequalities by aiming at alleviating the cost of an extragradient step. One salient feature of the proposed algorithms is that they require only one evaluation of the expected mapping at each iteration, and hence, the computation load may be significantly reduced. We show that the proposed algorithms can achieve sublinear ergodic convergence rate in terms of the restricted merit function. Furthermore, under the strongly Minty variational inequality condition, we derive some results related to convergence rate of the distance between iterates and solutions, the iteration and oracle complexities for the proposed algorithms when the sample size increases at a geometric or polynomial rate. Numerical experiments indicate that the proposed algorithms are quite competitive with some existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  Google Scholar 

  2. Blackard, J.A., Dean, D.J.: Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Comput. Electr. Agric. 24, 131–151 (1999)

    Article  Google Scholar 

  3. Bot R.I., Mertikopoulos P., Staudigl M., Vuong P.T.: Forward-backward-forward methods with variance reduction for stochastic variational inequalities. arxiv:1902.03355 (2019)

  4. Causality Workbench Team. http://www.causality.inf.ethz.ch/challenge.php?page=datasets (2008)

  5. Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Op. Res. 30, 1022–1038 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Pong, T.K., Wets, R.J.B.: Two-stage stochastic variational inequalities: An ERM-solution procedure. Math. Program. 165, 71–111 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cui, S.S., Shanbhag, U.V.: On the analysis of variance-reduced and randomized projection variants of single projection schemes for monotone stochastic variational inequality problems. Set-Valued Var. Anal. (2021). https://doi.org/10.1007/s11228-021-00572-6

    Article  MathSciNet  Google Scholar 

  8. Dang, C.D., Lan, G.: On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators. Comput. Opt. Appl. 60, 277–310 (2015)

    Article  MathSciNet  Google Scholar 

  9. Dua D., Graff C.: UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science, http://archive.ics.uci.edu/ml (2019)

  10. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. I and II. Springer, New York (2003)

    MATH  Google Scholar 

  11. Fl\(\mathring{\rm a}\)m S.D.: Games and cost of change. Annals of Operations Research, 2020, https://doi.org/10.1007/s10479-020-03585-w

  12. Giannessi F.: On Minty variational principle. New Trends in Mathematical Optimization, Kluwer, Dordrect, 93-99 (1997)

  13. Gidel G., Hugo B., Gaëtan V., Pascal V., Simon L.J.: A variational inequality perspective on generative adversarial networks. ICLR’19: Proceedings of the 32th International Conference on Learning Representations, https://openreview.net/pdf?id=r1laEnA5Ym (2019)

  14. Guyon I., Gunn S., Ben-Hur A., Dror G., (2004): Result analysis of the NIPS: feature selection challenge. In: Advances in Neural Information Processing Systems, vol. 17, pp. 545–552. MIT Press, Cambridge MA (2003)

    Google Scholar 

  15. Gürkan, G., Özge, A., Robonson, S.M.: Sample-path solution of stochastic variational inequalities. Math. Program. 84, 313–333 (1999)

    Article  MathSciNet  Google Scholar 

  16. Hsieh Y.G., Iutzeler F., Malick J., Mertikopoulos P.: On the convergence of single-call stochastic extra-gradient methods. In NeurIPS’19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, 6936-6946 (2019)

  17. Iusem, A.N., Jofré, A., Oliveira, R.I., Thompsn, P.: Extragradient method with variance reduction for stochastic variational inequalities. SIAM J. Optim. 24, 1143–1153 (2017)

    MathSciNet  Google Scholar 

  18. Iusem, A.N., Jofré, A., Oliveira, R.I., Thompsn, P.: Variance-based extragradient methods with line search for stochastic variational inequalities. SIAM J. Optim. 29, 175–206 (2019)

    Article  MathSciNet  Google Scholar 

  19. Iusem, A.N., Jofré, A., Thompsn, P.: Incremental constraint projection methods for monotone stochastic variational inequalities. Math. Op. Res. 44, 236–263 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Jadamba, B., Raciti, F.: Variational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopoly. J. Optim. Theory Appl. 165, 1050–1070 (2015)

    Article  MathSciNet  Google Scholar 

  21. Jiang, J., Chen, X., Chen, Z.P.: Quantitative analysis for a class of two-stage stochastic linear variational inequality problems. Comput. Opt. Appl. 76, 431–460 (2020)

    Article  MathSciNet  Google Scholar 

  22. Jiang, H.Y., Xu, H.F.: Stochastic approximation approaches to the stochastic variational inequality problem. IEEE Trans. Autom. Control 53, 1462–1475 (2008)

    Article  MathSciNet  Google Scholar 

  23. Juditsky, A., Nemirovski, A.S., Tauvel, C.: Solving variational inequalities with stochastic mirror-prox algorithm. Stochastic Syst. 1, 17–58 (2011)

    Article  MathSciNet  Google Scholar 

  24. Kannan, A., Shanbhag, U.V.: Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants. Comput. Optim. Appl. 74, 779–820 (2019)

    Article  MathSciNet  Google Scholar 

  25. Koshal, J., Nedić, A., Shanbhag, U.V.: Regularized iterative stochastic approximation methods for stochastic variational inequality problems. IEEE Trans. Autom. Control 58, 594–609 (2013)

    Article  MathSciNet  Google Scholar 

  26. LeCun Y., Cortes C., Burges C.J.C.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist (2010)

  27. Lei J.L., Shanbhag U.V.: Distributed variable sample-size gradient-response and best-response schemes for stochastic Nash equilibrium problems over graphs. arxiv:1811.11246.pdf (2020)

  28. Lei, J.L., Shanbhag, U.V., Pang, J.S., Sen, S.: On synchronous, asynchronous, and randomized best-response schemes for stochastic Nash games. Math. Op. Res. 45, 157–190 (2020)

    Article  MathSciNet  Google Scholar 

  29. Lincoff G.H.: The mushroom records drawn from the Audubon Society Field Guide to North American Mushrooms. http://archive.ics.uci.edu/ml/machine-learning-databases/mushroom (1981)

  30. Lin, G.H., Fukushima, M.: Stochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: A survey. Pac. J. Optim. 6, 455–482 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Liu M., Mroueh Y., Ross J., Zhang W., Cui X., Das P., Yang T.: Towards better understanding of adaptive gradient algorithms in generative adversarial nets. Proceedings of the 2020 International Conference on Learning Representations, https://openreview.net/pdf?id=SJxIm0VtwH (2020)

  32. Malitsky, Y.: Golden ratio algorithms for variational inequalities. Math. Program. 184, 383–410 (2020)

    Article  MathSciNet  Google Scholar 

  33. Mishchenko K., Kovalev D., Shulgin E., Malitsky Y., Richtárik P.: Revisiting stochastic extragradient. Proceedings of the 23th International Conference on Artificial Intelligence and Statistics, 108, 4573-4582 (2020)

  34. Nesterov, Y.: Dual extrapolation and its applications to solving variational inequalities and related problems. Math. Program. 109, 319–344 (2007)

    Article  MathSciNet  Google Scholar 

  35. Outrata, J.V., Valdman, J.: On computation of optimal strategies in oligopolistic markets respecting the cost of change. Math. Methods Oper. Res. 92, 489–509 (2020)

    Article  MathSciNet  Google Scholar 

  36. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    Article  MathSciNet  Google Scholar 

  37. Rockafellar, R.T., Wets, R.J.-B.: Stochastic variational inequalities: Single-stage to multistage. Math. Program. 165, 331–360 (2017)

    Article  MathSciNet  Google Scholar 

  38. Shanbhag, U.V.: Stochastic variational inequality problems: Applications, analysis, and algorithms. INFORMS Tutorials in Operations Research 71–107,(2013)

  39. Sun H.L., Chen X.: Two-stage stochastic variational inequalities: Theory, algorithms and applications. Journal of the Operations Research Society of China, https://link.springer.com/content/pdf/10.1007/s40305-019-00267-8.pdf (2019)

  40. Wang, M., Bertsekas, D.P.: Incremental constraint projection methods for variational inequalities. Math. Program. 150, 321–363 (2015)

    Article  MathSciNet  Google Scholar 

  41. Yang Z.P., Lin G.H.: Two variance-based proximal algorithms for stochastic mixed variational inequality problems. submitted (2019)

  42. Yang, Z.P., Wang, Y.L., Lin, G.H.: Variance-based modified backward-forward algorithm with line search for stochastic variational inequality problems and its applications. Asia-Pac. J. Oper. Res. 37, 2050011 (2020)

    Article  MathSciNet  Google Scholar 

  43. Yang Z.P., Zhang J., Wang Y.L., Lin G.H.: Variance-based subgradient extragradient method for stochastic variational inequality problems. submitted (2019)

  44. Yousefian, F., Nedić, A., Shanbhag, U.V.: On smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problems. Math. Program. 165, 391–431 (2017)

    Article  MathSciNet  Google Scholar 

  45. Yousefian, F., Nedić, A., Shanbhag, U.V.: On stochastic mirror-prox algorithms for stochastic Cartesian variational inequalities randomized block coordinate and optimal averaging schemes. Set-Valued Var. Anal. 26, 789–819 (2018)

    Article  MathSciNet  Google Scholar 

  46. Yousefian, F., Nedić, A., Shanbhag, U.V.: Self-tuned stochastic approximation schemes for non-Lipschitzian stochastic multi-user optimization and Nash games. IEEE Trans. Autom. Control 61, 1753–1766 (2016)

    Article  MathSciNet  Google Scholar 

  47. Zhang, X.J., Du, X.W., Yang, Z.P., Lin, G.H.: An infeasible stochastic approximation and projection algorithm for stochastic variational inequalities. J. Optim. Theory Appl. 183, 1053–1076 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC (No. 12071280), the Key Laboratory for Optimization and Control of Ministry of Education, Chongqing Normal University (No. CSSXKFKTZ202001), and the Young Talents in Higher Education of Guangdong (No. 2020KQNCX079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Hua Lin.

Additional information

Communicated by Sergey Zhukovskiy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZP., Lin, GH. Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities. J Optim Theory Appl 190, 393–427 (2021). https://doi.org/10.1007/s10957-021-01882-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01882-3

Keywords

Mathematics Subject Classification

Navigation