[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Nonemptiness and Compactness of Solution Sets to Weakly Homogeneous Generalized Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we deal with the weakly homogeneous generalized variational inequality, which provides a unified setting for several special variational inequalities and complementarity problems studied in recent years. By exploiting weakly homogeneous structures of involved map pairs and using degree theory, we establish a result which demonstrates the connection between weakly homogeneous generalized variational inequalities and weakly homogeneous generalized complementarity problems. Subsequently, we obtain a result on the nonemptiness and compactness of solution sets to weakly homogeneous generalized variational inequalities by utilizing Harker–Pang-type condition, which can lead to a Hartman–Stampacchia-type existence theorem. Last, we give several copositivity results for weakly homogeneous generalized variational inequalities, which can reduce to some existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational inequalities. Oper. Res. Lett. 35, 159–164 (2007)

    Article  MathSciNet  Google Scholar 

  2. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  3. Facchinei, F., Pang, J.-S.: Finite-Dimemsional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003)

    MATH  Google Scholar 

  4. Gowda, M.-S.: Polynomial complementarity problems. Pac. J. Optim. 13, 227–241 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Gowda, M.-S., Pang, J.-S.: Some existence results for multivalued complementarity problems. Math. Oper. Res. 17, 657–669 (1992)

    Article  MathSciNet  Google Scholar 

  6. Gowda, M.-S., Pang, J.-S.: On the boundedness and stability of solutions to the affine variational inequality problem. SIAM J. Control Optim. 32, 421–441 (1994)

    Article  MathSciNet  Google Scholar 

  7. Gowda, M.-S., Pang, J.-S.: Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory. Math. Oper. Res. 19, 831–879 (1994)

    Article  MathSciNet  Google Scholar 

  8. Gowda, M.-S., Sossa, D.: Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones. Math. Program. 177, 149–171 (2019)

    Article  MathSciNet  Google Scholar 

  9. Harker, P.T., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (2007)

    Article  MathSciNet  Google Scholar 

  10. Hieu, V.-T.: Solution maps of polynomial variational inequalities. J. Glob. Optim. 77, 807–824 (2020)

    Article  MathSciNet  Google Scholar 

  11. Huang, Z.-H., Qi, L.: Tensor complementarity problems-part I: basic theory. J. Optim. Theory Appl. 183, 1–23 (2019)

    Article  MathSciNet  Google Scholar 

  12. Huang, Z.-H., Qi, L.: Tensor complementarity problems-part III: applications. J. Optim. Theory Appl. 183, 771–791 (2019)

    Article  MathSciNet  Google Scholar 

  13. Isac, G.: Leray–Schauder type alternatives and the solvability of complementarity problems. Topol. Methods Nonlinear Anal. 18, 191–204 (2001)

    Article  MathSciNet  Google Scholar 

  14. Isac, G., Liu, J.L.: Complementarity problems, Karamardian’s condition and a generalization of Harker–Pang condition. Nonlinear Anal. Forum. 6, 383–390 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Ling, L.Y., He, H.J., Ling, C.: On error bounds of polynomial complementarity problems with structured tensors. Optimization 67, 341–358 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ling, L.Y., Ling, C., He, H.J.: Properties of the solution set of generalized polynomial complementarity problems. Pac. J. Optim. 16, 155–174 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Lloyd, N.: Degree Theory. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  18. Luo, G.M.: Solvability and boundedness for general variational inequality problems. Bull. Korean Math. Soc. 50, 589–599 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ma, X.X., Zheng, M.M., Huang, Z.-H.: A note on the nonemptiness and compactness of solution sets of weakly homogeneous variational inequalities. SIAM J. Optim. 30, 132–148 (2020)

    Article  MathSciNet  Google Scholar 

  20. Motzkin, T.S.: Copositive quadratic forms. Nat. Bureau Standards Rep. 1818, 11–12 (1952)

    Google Scholar 

  21. Noor, M.A.: Quasi variational inequalities. Appl. Math. Lett. 1, 367–370 (1988)

    Article  MathSciNet  Google Scholar 

  22. Ortega, J., Rheinholdt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    Google Scholar 

  23. Pang, J.-S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2, 21–56 (2005)

    Article  MathSciNet  Google Scholar 

  24. Pang, J.-S., Yao, J.C.: On a generalization of a normal map and equation. SIAM J. Control Optim. 33, 168–184 (1995)

    Article  MathSciNet  Google Scholar 

  25. Qi, L., Huang, Z.-H.: Tensor complementarity problems-part II: solution methods. J. Optim. Theory Appl. 183, 365–385 (2019)

    Article  MathSciNet  Google Scholar 

  26. Rockafellar, R.-T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  27. Wang, Y., Huang, Z.-H., Qi, L.: Global uniqueness and solvability of tensor variational inequalities. J. Optim. Theory Appl. 177, 137–152 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wang, J., Huang, Z.-H., Xu, Y.: Existence and uniqueness of solutions of the generalized polynomial variational inequality. Optim. Lett. 14, 1571–1582 (2020)

    Article  MathSciNet  Google Scholar 

  29. Xiu, N.H.: Tangent projection equations and general variational inequalities. J. Math. Anal. Appl. 258, 755–762 (2001)

    Article  MathSciNet  Google Scholar 

  30. Zhao, Y.B., Yuan, J.Y.: An alternative theorem for generalized variational inequalities and solvability of nonlinear quasi-\(P_*^{M}\) complementarity problems. Appl. Math. Comput. 109, 167–182 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Zheng, M.M., Huang, Z.-H.: An existence result for weakly homogeneous variational inequalities. arXiv:2012.05436v1 (2020)

  32. Zheng, M.M., Huang, Z.-H., Ma, X.X.: Nonemptiness and compactness of solution sets to generalized polynomial complementarity problems. J. Optim. Theory Appl. 185, 80–98 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the editor and anonymous reviewers for their useful comments and constructive advice. The second author’s work is partially supported by the National Natural Science Foundation of China (Grant No. 11871051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

Communicated by Antonino Maugeri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, MM., Huang, ZH. & Bai, XL. Nonemptiness and Compactness of Solution Sets to Weakly Homogeneous Generalized Variational Inequalities. J Optim Theory Appl 189, 919–937 (2021). https://doi.org/10.1007/s10957-021-01866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01866-3

Keywords

Mathematics Subject Classification

Navigation