[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Approximate Stationary Points of the Regularized Mathematical Program with Complementarity Constraints

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We discuss the convergence of regularization methods for mathematical programs with complementarity constraints with approximate sequence of stationary points. It is now well accepted in the literature that, under some tailored constraint qualification, the genuine necessary optimality condition for this problem is the M-stationarity condition. It has been pointed out, (Kanzow and Schwartz in Math Oper Res 40(2):253–275. 2015), that relaxation methods with approximate stationary points fail to ensure convergence to M-stationary points. We define a new strong approximate stationarity concept, and we prove that a sequence of strong approximate stationary points always converges to an M-stationary solution. We also prove under weak assumptions the existence of strong approximate stationary points in the neighborhood of an M-stationary solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye, J.J., Zhu, D.L., Zhu, Q.J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7(2), 481–507 (1997)

    Article  MathSciNet  Google Scholar 

  2. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  3. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results, vol. 28. Springer, Berlin (2013)

    MATH  Google Scholar 

  4. Flegel, M.L., Kanzow, C.: A Direct Proof for M-stationarity Under MPEC-GCQ for Mathematical Programs with Equilibrium Constraints. Springer, Berlin (2006)

    Book  Google Scholar 

  5. Kanzow, C., Schwartz, A.: Mathematical programs with equilibrium constraints: enhanced fritz john-conditions, new constraint qualifications, and improved exact penalty results. SIAM J. Optim. 20(5), 2730–2753 (2010)

    Article  MathSciNet  Google Scholar 

  6. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000)

    Article  MathSciNet  Google Scholar 

  7. Ye, J.J.: Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints. SIAM J. Optim. 10(4), 943–962 (2000)

    Article  MathSciNet  Google Scholar 

  8. Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307(1), 350–369 (2005)

    Article  MathSciNet  Google Scholar 

  9. Ye, J.J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22(4), 977–997 (1997)

    Article  MathSciNet  Google Scholar 

  10. Flegel, M.L., Kanzow, C.: On the guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54(6), 517–534 (2005)

    Article  MathSciNet  Google Scholar 

  11. Guo, L., Lin, G.H., Ye, J.J.: Solving mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 166(1), 234–256 (2015)

    Article  MathSciNet  Google Scholar 

  12. Outrata, J.V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24(3), 627–644 (1999)

    Article  MathSciNet  Google Scholar 

  13. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)

    Article  MathSciNet  Google Scholar 

  14. DeMiguel, V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16(2), 587–609 (2005)

    Article  MathSciNet  Google Scholar 

  15. Lin, G.H., Fukushima, M.: A modified relaxation scheme for mathematical programs with complementarity constraints. Ann. Oper. Res. 133(1–4), 63–84 (2005)

    Article  MathSciNet  Google Scholar 

  16. Steffensen, S., Ulbrich, M.: A new relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 20(5), 2504–2539 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kadrani, A., Dussault, J.P., Benchakroun, A.: A new regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 20(1), 78–103 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kanzow, C., Schwartz, A.: A new regularization method for mathematical programs with complementarity constraints with strong convergence properties. SIAM J. Optim. 23(2), 770–798 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kanzow, C., Schwartz, A.: The price of inexactness: convergence properties of relaxation methods for mathematical programs with complementarity constraints revisited. Math. Oper. Res. 40(2), 253–275 (2015)

    Article  MathSciNet  Google Scholar 

  20. Andreani, R., Haeser, G., Martìnez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60(5), 627–641 (2011)

    Article  MathSciNet  Google Scholar 

  21. Outrata, J.V.: A generalized mathematical program with equilibrium constraints. SIAM J. Control Optim. 38(5), 1623–1638 (2000)

    Article  MathSciNet  Google Scholar 

  22. Flegel, M.L., Kanzow, C.: Abadie-type constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 124(3), 595–614 (2005)

    Article  MathSciNet  Google Scholar 

  23. Pang, J.S., Fukushima, M.: Complementarity constraint qualifications and simplified b-stationarity conditions for mathematical programs with equilibrium constraints. Comput. Optim. Appl. 13(1), 111–136 (1999)

    Article  MathSciNet  Google Scholar 

  24. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 137(1–2), 257–288 (2013)

    Article  MathSciNet  Google Scholar 

  25. Andreani, R., Haeser, G., Secchin, L.D., Silva, P.J.S.: New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM J. Optim. 29(4), 3201–3230 (2019)

    Article  MathSciNet  Google Scholar 

  26. Ramos, A.: Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications and algorithmic consequences. Optim. Methods Softw. 1–37 (2019)

  27. Andreani, R., Secchin, L., Silva, P.: Convergence properties of a second order augmented Lagrangian method for mathematical programs with complementarity constraints. SIAM J. Optim. 28(3), 2574–2600 (2018)

    Article  MathSciNet  Google Scholar 

  28. Kadrani, A., Dussault, J.P., Benchakroun, A.: A globally convergent algorithm for MPCC. EURO J. Comput. Optim. 3(3), 263–296 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a grant from “l’Ecole des Docteurs de l’UBL” and “le Conseil Régional de Bretagne”. This research was partially supported by NSERC and FRQNT grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tangi Migot.

Additional information

Communicated by Fabiàn Flores-Bazàn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dussault, JP., Haddou, M., Kadrani, A. et al. On Approximate Stationary Points of the Regularized Mathematical Program with Complementarity Constraints. J Optim Theory Appl 186, 504–522 (2020). https://doi.org/10.1007/s10957-020-01706-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01706-w

Keywords

Mathematics Subject Classification

Navigation