[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

New Higher-Order Strong Karush–Kuhn–Tucker Conditions for Proper Solutions in Nonsmooth Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper considers higher-order necessary conditions for Henig-proper, positively proper and Benson-proper solutions. Under suitable constraint qualifications, our conditions are of the Karush–Kuhn–Tucker rule. The conditions include higher-order complementarity slackness for both the objective and the constraining maps. They are in a nonclassical form with a supremum expression on the right-hand side (instead of zero). Our results are new and improve the existing ones in the literature, even when applied to special cases of multiobjective single-valued optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corley, H.W.: Optimality conditions for maximizations of set-valued functions. J. Optim. Theory Appl. 58, 1–10 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Durea, M.: Optimality conditions for weak and firm efficiency in set-valued optimization. J. Math. Anal. Appl. 344, 1018–1028 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Götz, A., Jahn, J.: The Lagrange multiplier rule in set-valued optimization. SIAM J. Optim. 10, 331–344 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Khan, A.A., Tammer, Chr, Zalinescu, C.: Set-Valued Optimization: An Introduction with Applications. Springer, Berlin (2015)

    MATH  Google Scholar 

  5. Khan, A.A., Tammer, Chr: Second-order optimality conditions in set-valued optimization via asymptotic derivatives. Optimization 62, 743–758 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Khanh, P.Q., Tung, N.M.: Second-order optimality conditions with the envelope-like effect for set-valued optimization. J. Optim. Theory Appl. 167, 68–90 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Khanh, P.Q., Tung, N.M.: Second-order conditions for open-cone minimizers and firm minimizers in set-valued optimization subject to mixed constraints. J. Optim. Theory Appl. 171, 45–69 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Li, S.J., Zhu, S.K., Li, X.B.: Second order optimality conditions for strict efficiency of constrained set-valued optimization. J. Optim. Theory Appl. 155, 534–557 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Li, S.J., Teo, K.L., Yang, X.Q.: Higher-order optimality conditions for set-valued optimization. J. Optim. Theory Appl. 137, 533–553 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser Boston, Boston (1990)

    MATH  Google Scholar 

  11. Li, S.J., Chen, C.R.: Higher order optimality conditions for Henig efficient solutions in set-valued optimization. J. Math. Anal. Appl. 232, 1184–1200 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Khanh, P.Q., Tuan, N.D.: Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization. J. Optim. Theory Appl. 139, 243–261 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Khanh, P.Q., Tung, N.M.: Higher-order Karush–Kuhn–Tucker conditions in nonsmooth optimization. SIAM J. Optim. 28, 820–848 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Kawasaki, H.: An envelope-like effect of infinitely many inequality constraints on second order necessary conditions for minimization problems. Math. Program. 41, 73–96 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21, 265–287 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Penot, J.P.: Second order conditions for optimization problems with constraints. SIAM J. Control Optim. 37, 303–318 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Arutyunov, A.V., Avakov, E.R., Izmailov, A.F.: Necessary optimality conditions for constrained optimization problems under relaxed constraint qualifications. Math. Program. Ser. A. 114, 37–68 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Gutiérrez, C., Jiménez, B., Novo, V.: On second order Fritz John type optimality conditions in nonsmooth multiobjective programming. Math. Program. Ser B. 123, 199–223 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Khanh, P.Q., Tuan, N.D.: Second order optimality conditions with the envelope-like effect in nonsmooth multiobjective programming II: optimality conditions. J. Math. Anal. Appl. 403, 703–714 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Wang, Q.L., Li, S.J., Teo, K.L.: Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization. Optim. Lett. 4, 425–437 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Wang, Q.L., Li, S.J., Teo, K.L.: Generalized higher-order optimality conditions for set-valued optimization under Henig efficiency. Numer. Funct. Anal. Opitm. 30, 849–869 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, Berlin (2004)

    MATH  Google Scholar 

  23. Yang, X.M., Li, D., Wang, S.Y.: Near-subconvexlikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110, 413–427 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Gfrerer, H.: On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs. SIAM J. Optim. 23, 632–665 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, 3rd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  26. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  27. Ioffe, A.D.: Nonlinear regularity models. Math. Program. Ser B. 139, 223–242 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Khanh, P.Q., Kruger, A.K., Thao, N.H.: An induction theorem and nonlinear regularity models. SIAM J. Optim. 25, 2561–2588 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, New York (2006)

    Google Scholar 

  30. Chen, C.R., Li, S.J., Teo, K.L.: Higher order weak epiderivatives and applications to duality and optimality conditions. Comput. Math. Appl. 57, 1389–1399 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Henig, M.I.: Proper efficiency with respect to the cones. J. Optim. Theory Appl. 36, 387–407 (1982)

    MathSciNet  MATH  Google Scholar 

  32. Khanh, P.Q.: Proper solutions of vector optimization problems. J. Optim. Theory Appl. 74, 105–130 (1992)

    MathSciNet  MATH  Google Scholar 

  33. Benson, H.P.: An improved definition of proper efficiency for vector minimization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)

    MathSciNet  MATH  Google Scholar 

  34. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, London (2002)

    MATH  Google Scholar 

  35. Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

    MathSciNet  MATH  Google Scholar 

  36. Robinson, S.M.: Regularity and stability for convex multivalued functions. Math. Oper. Res. 1, 130–143 (1976)

    MathSciNet  MATH  Google Scholar 

  37. Ursescu, C.: Multifunctions with closed convex graph. Czechoslov. Math. J. 25, 438–441 (1975)

    MATH  Google Scholar 

  38. De Araujo, A.P., Monteiro, P.K.: On programming when the positive cone has an empty interior. J. Optim. Theory Appl. 67, 395–410 (1990)

    MathSciNet  MATH  Google Scholar 

  39. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    MathSciNet  MATH  Google Scholar 

  40. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  41. Burachik, R.S., Rizvi, M.M.: On weak and strong Kuhn–Tucker conditions for smooth multiobjective optimization. J. Optim. Theory Appl. 155, 477–491 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Huy, N.Q., Kim, D.S., Tuyen, N.V.: New second-order Karush–Kuhn–Tucker optimality conditions for vector optimization. Appl. Math. Optim. 79, 279–307 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Tuyen, N.V., Huy, N.Q., Kim, D.S.: Strong second-order Karush–Kuhn–Tucker optimality conditions for vector optimization. Appl. Anal. 99, 103–120 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by Vietnam National University, Ho Chi Minh City by the Grant Number B2018-28-02. A part of this work was done during research stays of the author at Vietnam Institute for Advanced Study in Mathematics (VIASM). The author would like to thank VIASM for its hospitality and support. I am grateful to the Editors and the referee for their useful comments, remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Minh Tung.

Additional information

Communicated by Alexandre Cabot.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tung, N.M. New Higher-Order Strong Karush–Kuhn–Tucker Conditions for Proper Solutions in Nonsmooth Optimization. J Optim Theory Appl 185, 448–475 (2020). https://doi.org/10.1007/s10957-020-01654-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01654-5

Keywords

Mathematics Subject Classification

Navigation