Abstract
In this paper, we propose generalized splitting methods for solving a class of nonconvex optimization problems. The new methods are extended from the classic Douglas–Rachford and Peaceman–Rachford splitting methods. The range of the new step-sizes even can be enlarged two times for some special cases. The new methods can also be used to solve convex optimization problems. In particular, for convex problems, we propose more relax conditions on step-sizes and other parameters and prove the global convergence and iteration complexity without any additional assumptions. Under the strong convexity assumption on the objective function, the linear convergence rate can be derived easily.
Similar content being viewed by others
References
Li, G., Pong, T.K.: Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems. Math. Program. 159, 371–401 (2016)
Combettes, P.L., Pesquet, J.-C.: A Douglas–Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 1, 564–574 (2007)
Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two or three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)
Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-\(n\)-rank tensor recovery via convex optimization. Inverse Probl. 27, 025010 (2011)
Han, D.R., He, H.J., Yang, H., Yuan, X.M.: A customized Douglas–Rachford splitting algorithm for separable convex minimization with linear constraints. Numer. Math. 127(1), 167–200 (2014)
He, B.S., Yuan, X.M.: On the O(\(1/n\)) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)
He, B.S., Yuan, X.M.: On the convergence rate of Douglas-Rachford operator splitting method. Math. Program. 153(2), 715–722 (2015)
Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)
Li, G., Liu, T., Pong, T.K.: Peaceman–Rachford splitting for a class of nonconvex optimization problems. Comput. Optim. Appl. 68(2), 407–436 (2017)
Li, M., Yuan, X.M.: A strictly contractive Peaceman–Rachford splitting method with logarithmic-quadratic proximal regularization for convex programming. Math. Oper. Res. 40(4), 842–858 (2015)
Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)
Wu, Z.M., Liu, F.X., Li, M.: A proximal Peaceman–Rachford splitting method for solving the multi-block separable convex minimization problems. Int. J. Comput. Math. 96(4), 708–728 (2019)
Davis, D., Yin, W.T.: Faster convergence rates of relaxed Peaceman–Rachford and ADMM under regularity assumptions. Math. Oper. Res. 42(3), 783–805 (2017)
He, B.S., Liu, H., Wang, Z.R., Yuan, X.M.: A strictly contractive Peaceman-Rachford splitting method for convex programming. SIAM J. Optim. 24(3), 1011–1040 (2014)
Bauschke, H.H., Moursi, W.M.: On the Douglas–Rachford algorithm. Math. Program. 164(1–2), 263–284 (2017)
Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set Valued Anal. 1(2), 185–212 (1993)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)
Themelis, A., Patrinos, P.: Douglas–Rachford splitting and ADMM for nonconvex optimization: tight convergence results (2018). arXiv:1709.05747v4
Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434–2460 (2015)
Guo, K., Han, D.R., Yuan, X.M.: Convergence analysis of Douglas–Rachford splitting method for “strongly + weakly” convex programming. SIAM J. Numer. Anal. 55(4), 1549–1577 (2017)
Lindstrom, S.B., Sims, B.: Survey: sixty years of Douglas–Rachford (2018). arXiv:1809.07181
Artacho, F.J.A., Borwein, J.M., Tam, M.K.: Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem. J. Glob. Optim. 65(2), 309–327 (2016)
Bogdan, M., Berg, E.V.D., Su, W., Candès, E.: Statistical estimation and testing via the sorted \(L_1\) norm (2013). arXiv:1310.1969
Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)
Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)
Wu, Z.M., Li, M.: General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems. Comput. Optim. Appl. 73(1), 129–158 (2019)
Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In: Colloques internationaux du C.N.R.S.: Les équations aux dérivées partielles, Paris (1962), Éditions du Centre National de la Recherche Scientifique, Paris, pp. 87–89 (1963)
Kurdyka, K.: On gradients of functions definable in \(o\)-minimal structures. Ann. Inst. Fourier 48, 769–783 (1998)
Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2006)
Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)
Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010)
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1–2), 5–16 (2009)
Guo, K., Han, D.R., Wu, T.T.: Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. Int. J. Comput. Math. 94(8), 1653–1669 (2017)
Wu, Z.M., Li, M., Wang, D.Z.W., Han, D.R.: A symmetric alternating direction method of multipliers for separable nonconvex minimization problems. Asia Pac. J. Oper. Res. 34(06), 1750030 (2017)
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)
Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
Li, M., Sun, D.F., Toh, K.-C.: A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization. SIAM J. Optim. 26(2), 922–950 (2016)
Acknowledgements
The authors are grateful to thank two anonymous referees for their helpful suggestions on improving the quality of the original manuscript. This work was supported by National Natural Science Foundation of China Grants 11771078 and 71661147004, Natural Science Foundation of Jiangsu Province Grant BK20181258 and Project 333 of Jiangsu Province Grant BRA2018351.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Alexander S. Strekalovsky.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, M., Wu, Z. Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems. J Optim Theory Appl 183, 535–565 (2019). https://doi.org/10.1007/s10957-019-01564-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-019-01564-1