Abstract
We introduce a Kojima–Megiddo–Mizuno type continuation method for solving tensor complementarity problems. We show that there exists a bounded continuation trajectory when the tensor is strictly semi-positive and any limit point tracing the trajectory gives a solution of the tensor complementarity problem. Moreover, when the tensor is strong strictly semi-positive, tracing the trajectory will converge to the unique solution. Some numerical results are given to illustrate the effectiveness of the method.
Similar content being viewed by others
References
Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. SIAM, Philadelphia (2009)
Song, Y., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 33, 308–323 (2017)
Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)
Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)
Chen, H., Qi, L., Song, Y.: Column sufficient tensors and tensor complementarity problems. Front. Math. China 13, 255–276 (2018)
Ding, W., Luo, Z., Qi, L.: \(P\)-tensors, \(P_0\)-tensors, and tensor complementarity problem, arXiv:1507.06731 (2015)
Guo, Q., Zheng, M.M., Huang, Z.H.: Properties of \(S\)-tensors. Linear Multilinear Algebra. https://doi.org/10.1080/03081087.2018.1430737 (2018)
Huang, Z.H., Qi, L.: Formulating an \(n\)-person noncoorperative game as a tensor complementarity problem. Comput. Optim. Appl. 66, 557–576 (2017)
Liu, D., Li, W., Vong, S.W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear Algebra 66, 1726–1749 (2018)
Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. 11, 471–482 (2017)
Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)
Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2015)
Song, Y., Qi, L.: Strictly semi-positive tensors and the boundedness of tensor complementarity problems. Optim. Lett. 11, 1407–1426 (2017)
Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170, 85–96 (2016)
Wang, X., Chen, H., Wang, Y.: Solution structures of tensor complementarity problem. Front. Math. China 13, 935–945 (2018)
Wang, Y., Huang, Z.H., Bai, X.L.: Exceptionally regular tensors and tensor complementarity problems. Optim. Methods Softw. 31, 815–828 (2016)
Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Springer, Singapore (2018)
Facchinei, F., Pang, J.S.: Finite Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)
Xie, S.L., Li, D.H., Xu, H.R.: An iterative method for finding the least solution of the tensor complementarity problem. J. Optim. Theory Appl. 175, 119–136 (2017)
Kojima, M., Megiddo, N., Mizuno, M.: A general framework of continuation methods for complementarity problems. Math. Oper. Res. 18, 945–963 (1993)
Kojima, M., Megiddo, N., Noma, T.: Homotopy continuation method for nonlinear complementarity problems. Math. Oper. Res. 16, 754–774 (1991)
Kojima, M., Mizuno, M., Noma, T.: A new continuation method for complementarity problems with uniform \(P\)-functions. Math. Oper. Res. 14, 107–113 (1989)
Xu, Q., Dang, C.: A new homotopy method for solving non-linear complementarity problems. Optimization 57, 681–689 (2008)
Zhao, Y.B., Li, D.: On a new homotopy continuation trajectory for nonlinear complementarity problems. Math. Oper. Res. 26, 119–146 (2001)
Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods. SIAM J. Matrix Anal. Appl. 37, 290–319 (2016)
Han, L.: A homotopy method for solving multilinear systems with M-tensors. Appl. Math. Lett. 69, 49–54 (2017)
Ni, Q., Qi, L.: A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. J. Global Optim. 61, 627–641 (2015)
Naber, G.L.: Topological Method in Euclidean Space. Cambridge University Press, London (1980)
Moré, J.J.: Global methods for nonlinear complementarity problems. Math. Oper. Res. 21, 589–614 (1996)
Allgower, E.L., Georg, K.: Numerical Continuation Methods, an Introduction, Springer Series in Computational Mathematics, vol. 13. Springer, Berlin (1990)
Bader, B.W., Kolda, T.G., et al.: MATLAB Tensor Toolbox Version 2.6 (2015)
Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. Theor. Comput. Sci. 359, 111–122 (2006)
Acknowledgements
The author would like to thank the two anonymous reviewers for their constructive comments and suggestions that have improved the paper. He also thanks Wen Li and Dongdong Liu for providing him their MATLAB code for the MNN method and Yun-Bin Zhao for the discussion of the continuation methods for nonlinear complementarity problems.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Guoyin Li.
Rights and permissions
About this article
Cite this article
Han, L. A Continuation Method for Tensor Complementarity Problems. J Optim Theory Appl 180, 949–963 (2019). https://doi.org/10.1007/s10957-018-1422-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-018-1422-2
Keywords
- Tensor complementarity problems
- Continuation method
- Strictly semi-positive tensors
- Strong strictly semi-positive tensors