[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimality Conditions for Vector Equilibrium Problems with Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We use asymptotic analysis for studying noncoercive pseudomonotone equilibrium problems and vector equilibrium problems. We introduce suitable notions of asymptotic functions, which provide sufficient conditions for the set of solutions of these problems to be nonempty and compact under quasiconvexity of the objective function. We characterize the efficient and weakly efficient solution set for the nonconvex vector equilibrium problem via scalarization. A sufficient condition for the closedness of the image of a nonempty, closed and convex set via a quasiconvex vector-valued function is given. Finally, applications to the quadratic fractional programming problem are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequality III, pp. 103–113. Academic Press, New York (1972)

    Google Scholar 

  2. Brézis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan’s minimax principle. Bolletino della Unione Matematica Italiana 6(4), 293–300 (1972)

    MathSciNet  MATH  Google Scholar 

  3. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Oettli, W.: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam. 22, 213–221 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Flores-Bazán, F.: Existence theory for finite-dimensional pseudomonotone equilibrium problems. Acta Appl. Math. 77, 249–297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ait Mansour, M., Chbani, Z., Riahi, H.: Recession bifunction and solvability of noncoercive equilibrium problems. Commun. Appl. Anal. 7, 369–377 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Iusem, A., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Program. 116, 259–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aussel, D., Cotrina, J., Iusem, A.: An existence result for quasi-equilibrium problems. J. Convex Anal. 24, 55–66 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  10. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  11. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  12. Amara, C.: Directions de majoration d’une fonction quasiconvexe et applications. Serdica Math. J. 24, 289–306 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Penot, J.P.: What is quasiconvex analysis? Optimization 47, 35–110 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Maximizing and minimizing quasiconvex functions: related properties, existence and optimality conditions via radial epiderivates. J. Glob. Optim. 63, 99–123 (2015)

    Article  MATH  Google Scholar 

  15. Flores-Bazán, F., Hadjisavvas, N., Lara, F., Montenegro, I.: First- and second-order asymptotic analysis with applications in quasiconvex optimization. J. Optim. Theory Appl. 170, 372–393 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lara, F., López, R.: Formulas for asymptotic functions via conjugates, directional derivatives and subdifferentials. J. Optim. Theory Appl. 173, 793–811 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iusem, A., Lara, F.: The \(q\)-asympotic function in \(c\)-convex analysis. Optimization (2018). https://doi.org/10.1080/02331934.2018.1456540

  18. Lara, F.: Generalized asymptotic functions in nonconvex multiobjective optimization problems. Optimization 66, 1259–1272 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Attouch, H., Chbani, Z., Moudafi, A.: Recession operators and solvability of variational problems in reflexive Banach spaces. In: Bauchitté, G., et al. (eds.) Calculus of Variations, Homogenization and Continuum Mechanics, pp. 51–67. World Scientific, Singapore (1994)

    Google Scholar 

  20. Deng, S.: Coercivity properties and well-posedness in vector optimization. RAIRO Oper. Res. 37, 195–208 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Deng, S.: Boundedness and nonemptiness of the efficient solution sets in multiobjective optimization. J. Optim. Theory Appl. 144, 29–42 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hadjisavvas, N., Schaible, S.: Quasimonotonicity and pseudomonotonicity in variational inequalities and equilibrium problems. In: Crouzeix, J.P., et al. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 257–275. Kluwer, Dordrech (1998)

    Chapter  Google Scholar 

  23. Iusem, A., Lara, F.: Second order asympotic functions and applications to quadratic programming. J. Convex Anal. 25, 271–291 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Cambini, A., Martein, L.: Generalized Convexity and Optimization. Springer, Berlin (2009)

    MATH  Google Scholar 

  25. Hadjisavvas, N., Komlosi, S., Schaible, S.: Handbook of Generalized Convexity and Generalized Monotonicity. Springer, Boston (2005)

    Book  MATH  Google Scholar 

  26. Giannessi, F.: Vector Variational Inequalities and Vector Equilibria. Mathematical Theories. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  27. Ansari, Q.H., Yao, J.C.: Recent Developments in Vector Optimization. Springer, New York (2012)

    Book  MATH  Google Scholar 

  28. Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization. J. Math. Anal. Appl. 179, 537–546 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuroiwa, D.: Convexity for set-valued maps. Appl. Math. Lett. 9, 97–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sawaragi, Y., Nakayama, H., Tanino, Y.: Theory of Multiobjective Optimization. Academic Press, New York (1985)

    MATH  Google Scholar 

  31. Schaible, S.: Fractional programming. In: Horst, R., Pardalos, P. (eds.) Handbook of Global Optimization, pp. 495–608. Kluwer Academic Publishers, Dordrecht (1995)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitude to both referees for their criticism and suggestions that helped to improve this paper. The research for the second author was partially supported by Conicyt–Chile under project Fondecyt Postdoctorado 3160205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Iusem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iusem, A., Lara, F. Optimality Conditions for Vector Equilibrium Problems with Applications. J Optim Theory Appl 180, 187–206 (2019). https://doi.org/10.1007/s10957-018-1321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1321-6

Keywords

Mathematics Subject Classification

Navigation