[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Coderivative Approach to the Robust Stability of Composite Parametric Variational Systems: Applications in Nonsmooth Mechanics

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The main concern of this paper is to investigate the Lipschitzian-like stability property (namely Aubin property) of the solution map of possibly nonmonotone variational systems with composite superpotentials. Using Mordukhovich coderivative criterion and a second-order subdifferential analysis, we provide simple and verifiable characterizations of this property in terms of the data involved in the problem. Applications are given in nonsmooth mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adly, S., Outrata, J.: Qualitative stability of a class of non-monotone variational inclusions: applications in electronics. J. Convex Anal. 20(1), 43–66 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Adly, S., Cibulka, R.: Quantitative stability of a generalized equation. Application to non-regular electrical circuits. J. Optim. Theory Appl. 160(1), 90–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Springer, New York (2006)

    Book  Google Scholar 

  4. Poliquin, R.: Integration of subdifferentials of nonconvex functions. Nonlinear Anal. 17, 385–398 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rockafellar, R.T.: First and second-order epi-differentiation. Trans. Am. Math. Soc. 307, 75–108 (1988)

    Article  MATH  Google Scholar 

  6. Addi, K., Adly, S., Brogliato, B., Goeleven, D.: A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics. Nonlinear Anal. Hybrid Syst. 1(1), 30–43 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adly, S., Cibulka, R., Massias, H.: Variational analysis and generalized equations in electronics, Stability and simulation issues. Set-Valued Var. Anal. 21(2), 333–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goeleven, D.: Complementarity and Variational Inequalities in Electronics. Academic Press, New York (2017)

    MATH  Google Scholar 

  9. Moreau, J.J.: La Notion du surpotentiel et les liaisons unilatérales en élastostatique. C.R. Acad. Sci. Paris 167, 954–957 (1968)

    MATH  Google Scholar 

  10. Moreau, J.J., Panagiotopoulos, P.D.: Nonsmooth Mechanics and Applications, CISM, vol. 302. Springer, Wien (1988)

    Book  MATH  Google Scholar 

  11. Panagiotopoulos, P.D.: Non-convex superpotentials in the sense of F.H. Clarke and applications. Mech. Res. Comm. 8, 335–340 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Panagiotopoulos, P.D.: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  13. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  14. Rockafellar, R.T.: Generalized directional derivatives and subgradients of nonconvex functions. Canad. J. Math. 32(2), 257–280 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chang, K.C.: Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lur’e, A.I., Postnikov, V.N.: On the theory of stability of control systems. Appl. Math. Mech. 8(3), 246–248 (1944). (in Russian)

    MATH  Google Scholar 

  17. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)

    Book  MATH  Google Scholar 

  18. Mordukhovich, B.S.: Generalized differential calculus for nonsmooth and set-valued mappings. J. Math. Anal. Appl. 183, 250–288 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mordukhovich, B.S., Outrata, J.: On second-order subdifferentials and their applications. SIAM J. Optim. 12, 139–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Adly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adly, S. A Coderivative Approach to the Robust Stability of Composite Parametric Variational Systems: Applications in Nonsmooth Mechanics. J Optim Theory Appl 180, 62–90 (2019). https://doi.org/10.1007/s10957-018-1293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1293-6

Keywords

Mathematics Subject Classification

Navigation