[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Lipschitz Modulus of the Optimal Value in Linear Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The present paper is devoted to the computation of the Lipschitz modulus of the optimal value function restricted to its domain in linear programming under different types of perturbations. In the first stage, we study separately perturbations of the right-hand side of the constraints and perturbations of the coefficients of the objective function. Secondly, we deal with canonical perturbations, i.e., right-hand side perturbations together with linear perturbations of the objective. We advance that an exact formula for the Lipschitz modulus in the context of right-hand side perturbations is provided, and lower and upper estimates for the corresponding moduli are also established in the other two perturbation frameworks. In both cases, the corresponding upper estimates are shown to provide the exact moduli when the nominal (original) optimal set is bounded. A key strategy here consists in taking advantage of the background on calmness in linear programming and providing the aimed Lipschitz modulus through the computation of a uniform calmness constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saaty, T., Gass, S.: Parametric objective function (part 1). J. Oper. Res. Soc. Am. 2, 316–319 (1954)

    MATH  Google Scholar 

  2. Gass, S., Saaty, T.: Parametric objective function (part 2)-generalization. J. Oper. Res. Soc. Am. 3, 395–401 (1955)

    MATH  Google Scholar 

  3. Nožička, F., Guddat, J., Hollatz, H., Bank, B.: Theorie der Linearen Parametrischen Optimierung. Akademie-Verlag, Berlin (1974)

    MATH  Google Scholar 

  4. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-Linear Parametric Optimization. Akademie-Verlag, Berlin (1982). and Birkhäuser, Basel (1983)

    Book  MATH  Google Scholar 

  5. Klatte, D.: Lineare Optimierungsprobleme mit Parametern in der Koeffizientenmatrix der Restriktionen. In: Lommatzsch, K. (ed.) Anwendungen der Linearen Parametrischen Optimierung, pp. 23–53. Akademie-Verlag, Berlin (1979)

    Chapter  Google Scholar 

  6. Wets, R.J.-B.: On the continuity of the value of a linear program and of related polyhedral-valued multifunctions. Math. Progr. Study 24, 14–29 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dantzig, G.B., Folkman, J., Shapiro, N.: On the continuity of the minimum set of a continuous function. J. Math. Anal. Appl. 17, 519–548 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dontchev, A., Zolezzi, T.: Well-Posed Optimization Problems. Lecture Notes in Mathematics, vol. 1543. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  9. Kummer, B.: Globale Stabilität quadratischer Optimierungsprobleme. Wiss. Zeitschrift der Humboldt-Universität zu Berlin. Math.-Nat. R. XXVI(5), 565-569 (1977)

  10. Robinson, S.M.: Stability theory for systems of inequalities. Part I: linear systems. SIAM J. Numer. Anal. 12, 754–769 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Progr. Study 14, 206–214 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Walkup, D.W., Wets, R.J.-B.: A Lipschitzian characterization of convex polyhedra. Proc. Am. Math. Soc. 20, 167–173 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Lipschitz continuity of the optimal value via bounds on the optimal set in linear semi-infinite optimization. Math. Oper. Res. 31, 478–489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gisbert, M.J., Cánovas, M.J., Parra, J., Toledo, F.J.: Calmness of the optimal value in linear programming. SIAM J. Optim. 3, 2201–2221 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  16. Renegar, J.: Some perturbation theory for linear programming. Math. Program. 65A, 73–91 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Renegar, J.: Linear programming, complexity theory and elementary functional analysis. Math. Program. 70, 279–351 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Li, W.: Sharp Lipschitz constants for basic optimal solutions and basic feasible solutions of linear programs. SIAM J. Control Optim. 32, 140–153 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer, New York (2009)

    Book  MATH  Google Scholar 

  20. Klatte, D., Kummer, B.: Nonsmooth equations in optimization: regularity, calculus, methods and applications. In: Pardalos, P. (ed.) Nonconvex Optimization Application, vol. 60. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  21. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)

    Book  Google Scholar 

  22. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  23. Cánovas, M.J., Klatte, D., López, M.A., Parra, J.: Metric regularity in convex semi-infinite optimization under canonical perturbations. SIAM J. Optim. 18, 717–732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cánovas, M.J., Gómez-Senent, F.J., Parra, J.: On the Lipschitz modulus of the argmin mapping in linear semi-infinite optimization. Set-Val. Var. Anal. 16, 511–538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cánovas, M.J., Dontchev, A.L., López, M.A., Parra, J.: Metric regularity of semi-infinite constraint systems. Math. Prog. Ser. B 104, 329–346 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Klatte, D.: Lipschitz continuity of infima and optimal solutions in parametric optimization: the polyhedral case. In: Guddat, J., Jongen, H.T., Kummer, B., Nožička, F. (eds.) Parametric Optimization and Related Topics, pp. 229–248. Akademie-Verlag, Berlin (1987)

    Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    Book  MATH  Google Scholar 

  28. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems. Math. Program. 103A, 95–126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by project MTM2014-59179-C2-2-P and its associated grant BES-2015-073220, both from MINECO, Spain and FEDER, “Una manera de hacer Europa”, European Union. The authors wish to thank the referees for their suggestions and comments, which have improved the original version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Parra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gisbert, M.J., Cánovas, M.J., Parra, J. et al. Lipschitz Modulus of the Optimal Value in Linear Programming. J Optim Theory Appl 182, 133–152 (2019). https://doi.org/10.1007/s10957-018-01456-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-01456-w

Keywords

Mathematics Subject Classification

Navigation