[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Classification of Optimal Group-Invariant Solutions: Cylindrical Korteweg–de Vries Equation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Classification of optimal group-invariant solutions has been carried out for cylindrical Korteweg–de Vries equation. It is a nonlinear evolution equation often found in studies of fluid mechanics and plasmas. An optimal system of subalgebras is obtained for the group of Lie generators associated with the equation, and then, the group-invariant solutions are obtained for each member in the optimal class. The procedure for calculating other group-invariant solutions from the optimal class is also illustrated with an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. Maxon, S., Viecelli, J.: Cylindrical solitons. Phys. Fluids 17, 1614–1616 (1974)

    Article  Google Scholar 

  2. Mamun, A.A., Shukla, P.K.: Cylindrical and spherical dust ion-acoustic solitary waves. Phys. Plasmas 9, 1468–1470 (2001)

    Article  MATH  Google Scholar 

  3. Meneses, H.P., Chwang, A.T.: IIHR report no 247, University of Iowa (1982)

  4. Calogero, F., Degasperis, A.: Spectral Transforms and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations-I. North-Holland Publishing Company, Amsterdam (1982)

    MATH  Google Scholar 

  5. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  6. Olver, P.J.: Applications of Lie groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  7. Ibragimov, N.H.: Lie Group Analysis of Differential Equations, vol. 1. CRC Press, Boca Raton (1994)

    Google Scholar 

  8. Qian, M., Hu, X.R., Chen, Y.: ONEOptimal: a Maple package for generating one-dimensional optimal system of finite dimensional Lie algebra. Commun. Theor. Phys. 61(2), 160 (2014)

    Article  Google Scholar 

  9. Hu, X.R., Li, Y.Q., Chen, Y.: A direct algorithm of one-dimensional optimal system for the group invariant solutions. J. Math. Phys. 56(5), 053504 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, X.R., Li, Y.Q., Chen, Y.: Constructing two-dimensional optimal system for the group invariant solutions. J. Math. Phys. 57(2), 023518 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zakharov, N.S., Korobeinikov, V.P.: Group analysis of the generalised Korteweg–de Vries–Burger’s equation. J. Appl. Math. Mech. 44, 668 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Gupta.

Additional information

Communicated by Francesco Zirilli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Ghosh, S.K. Classification of Optimal Group-Invariant Solutions: Cylindrical Korteweg–de Vries Equation. J Optim Theory Appl 173, 763–769 (2017). https://doi.org/10.1007/s10957-017-1111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1111-6

Keywords

Mathematics Subject Classification

Navigation