[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a modified Josephy–Newton direction is presented for solving the symmetric non-monotone variational inequality. The direction is a suitable descent direction for the regularized gap function. In fact, this new descent direction is obtained by developing the Gauss–Newton idea, a well-known method for solving systems of equations, for non-monotone variational inequalities, and is then combined with the Broyden–Fletcher–Goldfarb–Shanno-type secant update formula. Also, when Armijo-type inexact line search is used, global convergence of the proposed method is established for non-monotone problems under some appropriate assumptions. Moreover, the new algorithm is applied to an equivalent non-monotone variational inequality form of the eigenvalue complementarity problem and some other variational inequalities from the literature. Numerical results from a variety of symmetric and asymmetric eigenvalue complementarity problems and the variational inequalities show a good performance of the proposed algorithm with regard to the test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagurney, A.: Variational inequalities. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 3989–3994. Springer, New York (2009)

    Chapter  Google Scholar 

  2. Signorini, A.: Questioni di elasticiá non linearizzata e semilinearizzata. Rend. Mat. Appl. Ser. 18, 95–139 (1959). (in Italian)

    MathSciNet  MATH  Google Scholar 

  3. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  4. Adly, S., Rammal, H.: A new method for solving Pareto eigenvalue complementarity problems. Comput. Optim. Appl. 55, 703–731 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adly, S., Seeger, A.: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. 49, 299–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, H.S.: A family of NCP function and a descent method for the nonlinear complementarity problem. Comput. Optim. Appl. 40, 39–404 (2008)

    MathSciNet  Google Scholar 

  7. Judice, J., Faustino, A.: A sequential LCP algorithm for bilevel linear programming. Ann. Oper. Res. 34, 89–106 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Júdice, J.J., Sherali, H.D., Ribeiro, I.M., Rosa, S.S.: On the asymmetric eigenvalue complementarity problem. Optim. Methods Softw. 24, 549–568 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pinto da Costa, A., Seeger, A.: Numerical resolution of cone constrained eigenvalue problems. Comput. Appl. Math. 28, 37–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. da Costa, A.P., Seeger, A.: Cone constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl. 45, 25–57 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou, Y., Gowda, M.S.: On the finiteness of the cone spectrum of certain linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 431, 772–782 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Queiroz, M., Júdice, J., Humes, J.R.C.: The symmetric eigenvalue complementarity problem. Math. Comput. 73, 1849–1863 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Júdice, J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391–407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Le Thi, H.A., Moeini, M., Pham Dinh, T., Júdice, J.J.: A DC programming approach for solving the symmetric eigenvalue complementarity problem. Comput. Optim. Appl. 51, 1097–1117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pinto da Costa, A., Martins, J.A.C., Figueiredo, I.N., Júdice, J.J.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dirkse, S.P., Ferris, M.C.: The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5, 123–156 (1995)

    Article  Google Scholar 

  18. Munson, T.S.: Algorithms and Environments for Complementarity. Ph.D. Thesis, University of Wisconsin-Madison, Wisconsin (2000)

  19. Josephy, N.H.: Newton’s method for generalized equations. Technical Summary Report no. 1965, Mathematics Research Center, University of Wisconsin, Madison (1979)

  20. Josephy, N.H.: Quasi-Newton method for generalized equations. Technical Summary Report no. 1966, Mathematics Research Center, University of Wisconsin, Madison ( 1979)

  21. Robinson, S.M.: Generalized equations. In: Bachem, A., Grotschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 346–367. Springer, Berlin (1982)

    Google Scholar 

  22. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eaves, B.C.: A locally quadratically convergent algorithm for computing stationary points. Technical Report SOL 78-13, Department of Operations Research, Stanford University (1978)

  24. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pang, J.S., Chart, D.: Iterative methods for variational and complementarity problems. Math. Program. 24, 284–313 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Harker, P.T., Pang, J.S.: Finite dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Marcotte, P., Dussault, J.P.: A note on a globally convergent Newton method for solving monotone variational inequalities. Oper. Res. Lett. 6, 35–42 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Marcotte, P.: A new algorithm for solving variational inequalities with application to the traffic assignment problem. Math. Program. 33, 339–351 (1985)

    Article  MathSciNet  Google Scholar 

  29. Taji, K., Fukushima, M., Ibaraki, T.: A globally convergent Newton method for solving strongly monotone variational inequalities. Math. Program. 58, 369–383 (1993)

    Article  MATH  Google Scholar 

  30. Taji, K.: A note on globally convergent Newton method for strongly monotone variational inequalities. J. Oper. Res. Soc. Jpn. 51, 310–316 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Peng, J.M., Fukushima, M.: A hybrid Newton method for solving the variational inequality problem via the D-gap function. Math. Program. 86, 367–386 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Long, J., Zeng, S.: A projection-filter method for solving nonlinear complementarity problems. Appl. Math. Comput. 216, 300–307 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Auslender, A.: Optimisation : Methodes Numeriques. Masson, Paris (1976)

    MATH  Google Scholar 

  34. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bras, C.P., Fukushima, M., Júdice, J.J., Rosa, S.S.: Variational inequality formulation of the asymmetric eigenvalue complementarity problem and its solution by means of gap functions. Pac. J. Optim. 8, 197–215 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Li, D., Fukushima, M.: A globally and super linearly convergent Gauss–Newton based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37, 152–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, D.H., Fukushima, M.: On the global convergence of the BFGS method for nonconvex unconstrained optimization problems. SIAM J. Optim. 11, 1054–1064 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, D.H., Fukushima, M.: A modified BFGS method and its global convergence in nonconvex minimization. J. Comput. Appl. Math. 129, 15–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  41. Sun, D., Fukushima, M., Qi, L.: A computable generalized Hessian of the D-gap function and Newton-type methods for variational inequality problems. In: Ferris, M.C., Pang, J.-S. (eds.) Complementarity and Variational Problems: State of the Arts, pp. 452–472. SIAM, Philadelphia (1997)

    Google Scholar 

  42. Byrd, R., Nocedal, J.: A tool for analysis of Quasi–Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26, 727–739 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Júdice, J.J., Sherali, H.D., Ribeiro, I.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37, 139–156 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Niu, Y.S., Pham Dinh, T., Le Thi, H.A., Júdice, J.J.: Efficient DC programming approaches for the asymmetric eigenvalue complementarity problem. Optim. Methods Softw. 28, 812–829 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kojima, M., Shindo, S.: Extensions of Newton and Quasi–Newton methods to systems of \( PC^{1} \) equations. J. Oper. Res. Soc. Jpn. 29, 352–374 (1986)

    MathSciNet  MATH  Google Scholar 

  46. Pang, J.-S., Gabriel, S.A.: NE/SQP: a robust algorithm for the nonlinear complementary problem. Math. Program. 60, 295–337 (1993)

    Article  MATH  Google Scholar 

  47. Harker, P.T.: Accelerating the convergence of the diagonalization and projection algorithms for finite-dimensional variational inequalities. Math. Program. 41, 29–59 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Marcotte, P.: Application of Khobotov’s algorithm to variational inequalities and network equilibrium problems. INFORM 29, 258–271 (1991)

    MATH  Google Scholar 

  49. Dafermos, S.: Traffic equilibrium and variational inequalities. Transp. Sci. 14, 42–54 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Shakeri.

Additional information

Communicated by Masao Fukushima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, F., Shakeri, F. A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems. J Optim Theory Appl 173, 923–940 (2017). https://doi.org/10.1007/s10957-017-1100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1100-9

Keywords

Mathematics Subject Classification

Navigation