[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Rate of Convergence of the Bundle Method

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The number of iterations needed by the bundle method for nonsmooth optimization to achieve a specified solution accuracy can be bounded by the product of the inverse of the accuracy and its logarithm, if the function is strongly convex. The result is true for the versions of the method with multiple cuts and with cut aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lemaréchal, C.: Nonsmooth optimization and descent methods, Research Report 78–4. International Institute of Applied Systems Analysis, Laxenburg (1978)

  2. Mifflin, R.: A modification and an extension of Lemaréchal’s algorithm for nonsmooth minimization. In: Sorensen, D.C., Wets, R.J.B. (eds.) Nondifferential and Variational Techniques in Optimization, pp. 77–90. North–Holland, Amsterdam (1982)

    Chapter  Google Scholar 

  3. Kiwiel, K.C.: An aggregate subgradient method for nonsmooth convex minimization. Math. Program. 27(3), 320–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  5. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)

    MATH  Google Scholar 

  6. Bonnans, J.-F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization. Theoretical and Practical Aspects. Springer, Berlin (2003)

    MATH  Google Scholar 

  7. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1–3), 111–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69(1–3), 89–109 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Lan, G.: Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization. Math. Program. 149(1–2), 1–45 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ruszczyński, A.: Nonlinear Optimization. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation Award DMS-1312016 and the Air Force Office of Scientific Research Award FA95550-15-1-0251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Ruszczyński.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Ruszczyński, A. Rate of Convergence of the Bundle Method. J Optim Theory Appl 173, 908–922 (2017). https://doi.org/10.1007/s10957-017-1108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1108-1

Keywords

Mathematics Subject Classification