[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present a primal–dual algorithm for solving a constrained optimization problem. This method is based on a Newtonian method applied to a sequence of perturbed KKT systems. These systems follow from a reformulation of the initial problem under the form of a sequence of penalized problems, by introducing an augmented Lagrangian for handling the equality constraints and a log-barrier penalty for the inequalities. We detail the updating rules for monitoring the different parameters (Lagrange multiplier estimate, quadratic penalty and log-barrier parameter), in order to get strong global convergence properties. We show that one advantage of this approach is that it introduces a natural regularization of the linear system to solve at each iteration, for the solution of a problem with a rank deficient Jacobian of constraints. The numerical experiments show the good practical performances of the proposed method especially for degenerate problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1, Ser. A), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1, Ser. A), 149–185 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods. Math. Program. 87(2, Ser. B), 303–316 (2000). Studies in algorithmic optimization

  5. Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. Fundamental of Algorithms. SIAM Publications, Philadelphia (2014)

    Book  MATH  Google Scholar 

  6. Conn, A.R., Gould, N.I.M., Toint, P.L.: LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer Series in Computational Mathematics, vol. 17. Springer, Berlin (1992)

    MATH  Google Scholar 

  7. Kočvara, M., Stingl, M.: Pennon: a code for convex nonlinear and semidefinite programming. Optim. Methods Softw. 18(3), 317–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Armand, P., Benoist, J., Omheni, R., Pateloup, V.: Study of a primal-dual algorithm for equality constrained minimization. Comput. Optim. Appl. 59(3), 405–433 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Armand, P., Omheni, R.: A globally and quadratically convergent primal-dual augmented Lagrangian algorithm for equality constrained optimization. Optim. Methods Softw. 31(1), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  10. Chen, L., Goldfarb, D.: Interior-point \(l_2\)-penalty methods for nonlinear programming with strong global convergence properties. Math. Program. 108(1, Ser. A), 1–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gill, P.E., Robinson, D.P.: A primal-dual augmented Lagrangian. Comput. Optim. Appl. 51(1), 1–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gill, P.E., Robinson, D.P.: A globally convergent stabilized SQP method. SIAM J. Optim. 23(4), 1983–2010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Omheni, R.: Méthodes primales-duales régularisées pour l’optimisation non linéaire avec contraintes. Ph.D. thesis, University of Limoges, France (2014)

  14. Yamashita, H., Yabe, H.: An interior point method with a primal-dual quadratic barrier penalty function for nonlinear optimization. SIAM J. Optim. 14(2), 479–499 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Armand, P., Benoist, J., Orban, D.: From global to local convergence of interior methods for nonlinear optimization. Optim. Methods Softw. 28(5), 1051–1080 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wächter, A., Biegler, L.T.: Failure of global convergence for a class of interior point methods for nonlinear programming. Math. Program. 88(3, Ser. A), 565–574 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)

    Google Scholar 

  18. Armand, P., Benoist, J.: Uniform boundedness of the inverse of a Jacobian matrix arising in regularized interior-point methods. Math. Program. 137(1–2, Ser. A), 587–592 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedlander, M.P., Orban, D.: A primal-dual regularized interior-point method for convex quadratic programs. Math. Program. Comput. 4(1), 71–107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  Google Scholar 

  22. Armand, P., Benoist, J., Orban, D.: Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming. Comput. Optim. Appl. 41(1), 1–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ulbrich, M., Ulbrich, S., Vicente, L.N.: A globally convergent primal-dual interior-point filter method for nonlinear programming. Math. Program. 100(2, Ser. A), 379–410 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: local convergence. SIAM J. Optim. 16(1), 32–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer, Berlin (1981)

  26. Schittkowski, K. (ed.): More Test Examples for Nonlinear Programming Codes. Springer, New York (1987)

    MATH  Google Scholar 

  27. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2, Ser. A), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Duff, I.S.: Ma57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. 30, 118–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Brooks/Cole, Pacific Grove (2002)

    MATH  Google Scholar 

  30. Wright, S.J.: An algorithm for degenerate nonlinear programming with rapid local convergence. SIAM J. Optim. 15(3), 673–696 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and SifDec: A constrained and unconstrained testing environment, revisited. Tech. rep, CERFACS, Toulouse, France (2001)

  32. Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking optimization software with COPS 3.0. Tech. rep., Argonne National Laboratory (2004)

  33. Armand, P., Lankoandé, I.: An inexact proximal regularization method for unconstrained optimization. Math. Methods Oper. Res. (2016). doi:10.1007/s00186-016-0561-1

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Joshua Griffin for his comments and suggestions which helped us to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Armand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armand, P., Omheni, R. A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization. J Optim Theory Appl 173, 523–547 (2017). https://doi.org/10.1007/s10957-017-1071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1071-x

Keywords

Mathematics Subject Classification

Navigation