Abstract
We present a primal–dual algorithm for solving a constrained optimization problem. This method is based on a Newtonian method applied to a sequence of perturbed KKT systems. These systems follow from a reformulation of the initial problem under the form of a sequence of penalized problems, by introducing an augmented Lagrangian for handling the equality constraints and a log-barrier penalty for the inequalities. We detail the updating rules for monitoring the different parameters (Lagrange multiplier estimate, quadratic penalty and log-barrier parameter), in order to get strong global convergence properties. We show that one advantage of this approach is that it introduces a natural regularization of the linear system to solve at each iteration, for the solution of a problem with a rank deficient Jacobian of constraints. The numerical experiments show the good practical performances of the proposed method especially for degenerate problems.
Similar content being viewed by others
References
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1, Ser. A), 25–57 (2006)
Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)
Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1, Ser. A), 149–185 (2000)
Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods. Math. Program. 87(2, Ser. B), 303–316 (2000). Studies in algorithmic optimization
Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. Fundamental of Algorithms. SIAM Publications, Philadelphia (2014)
Conn, A.R., Gould, N.I.M., Toint, P.L.: LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer Series in Computational Mathematics, vol. 17. Springer, Berlin (1992)
Kočvara, M., Stingl, M.: Pennon: a code for convex nonlinear and semidefinite programming. Optim. Methods Softw. 18(3), 317–333 (2003)
Armand, P., Benoist, J., Omheni, R., Pateloup, V.: Study of a primal-dual algorithm for equality constrained minimization. Comput. Optim. Appl. 59(3), 405–433 (2014)
Armand, P., Omheni, R.: A globally and quadratically convergent primal-dual augmented Lagrangian algorithm for equality constrained optimization. Optim. Methods Softw. 31(1), 1–21 (2017)
Chen, L., Goldfarb, D.: Interior-point \(l_2\)-penalty methods for nonlinear programming with strong global convergence properties. Math. Program. 108(1, Ser. A), 1–36 (2006)
Gill, P.E., Robinson, D.P.: A primal-dual augmented Lagrangian. Comput. Optim. Appl. 51(1), 1–25 (2012)
Gill, P.E., Robinson, D.P.: A globally convergent stabilized SQP method. SIAM J. Optim. 23(4), 1983–2010 (2013)
Omheni, R.: Méthodes primales-duales régularisées pour l’optimisation non linéaire avec contraintes. Ph.D. thesis, University of Limoges, France (2014)
Yamashita, H., Yabe, H.: An interior point method with a primal-dual quadratic barrier penalty function for nonlinear optimization. SIAM J. Optim. 14(2), 479–499 (2003)
Armand, P., Benoist, J., Orban, D.: From global to local convergence of interior methods for nonlinear optimization. Optim. Methods Softw. 28(5), 1051–1080 (2013)
Wächter, A., Biegler, L.T.: Failure of global convergence for a class of interior point methods for nonlinear programming. Math. Program. 88(3, Ser. A), 565–574 (2000)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)
Armand, P., Benoist, J.: Uniform boundedness of the inverse of a Jacobian matrix arising in regularized interior-point methods. Math. Program. 137(1–2, Ser. A), 587–592 (2013)
Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002)
Friedlander, M.P., Orban, D.: A primal-dual regularized interior-point method for convex quadratic programs. Math. Program. Comput. 4(1), 71–107 (2012)
Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)
Armand, P., Benoist, J., Orban, D.: Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming. Comput. Optim. Appl. 41(1), 1–25 (2008)
Ulbrich, M., Ulbrich, S., Vicente, L.N.: A globally convergent primal-dual interior-point filter method for nonlinear programming. Math. Program. 100(2, Ser. A), 379–410 (2004)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: local convergence. SIAM J. Optim. 16(1), 32–48 (2005)
Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer, Berlin (1981)
Schittkowski, K. (ed.): More Test Examples for Nonlinear Programming Codes. Springer, New York (1987)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2, Ser. A), 201–213 (2002)
Duff, I.S.: Ma57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. 30, 118–144 (2004)
Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Brooks/Cole, Pacific Grove (2002)
Wright, S.J.: An algorithm for degenerate nonlinear programming with rapid local convergence. SIAM J. Optim. 15(3), 673–696 (2005)
Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and SifDec: A constrained and unconstrained testing environment, revisited. Tech. rep, CERFACS, Toulouse, France (2001)
Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking optimization software with COPS 3.0. Tech. rep., Argonne National Laboratory (2004)
Armand, P., Lankoandé, I.: An inexact proximal regularization method for unconstrained optimization. Math. Methods Oper. Res. (2016). doi:10.1007/s00186-016-0561-1
Acknowledgements
The authors would like to thank Dr. Joshua Griffin for his comments and suggestions which helped us to improve the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Armand, P., Omheni, R. A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization. J Optim Theory Appl 173, 523–547 (2017). https://doi.org/10.1007/s10957-017-1071-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-017-1071-x
Keywords
- Nonlinear optimization
- Constrained optimization
- Augmented Lagrangian
- Primal–dual methods
- Interior-point methods