[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Approximate and Widespread Pareto Solutions in the Structure-Control Design of Mechatronic Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The structure-control design approach of mechatronic systems requires a different design formulation where the mechanical structure and control system are simultaneously designed. Optimization problems are commonly stated to confront the structure-control design formulation. Nevertheless, these problems are often very complex with a highly nonlinear dependence between the design variables and performance functions. This fact has made the use of evolutionary algorithms, a feasible alternative to solve the highly nonlinear optimization problem; the method to find the best solution is an open issue in the structure-control design approach. Hence, this paper presents a mechanism to exhaustively exploit the solutions in the differential evolution (DE) algorithm in order to find more non-dominated solutions with uniformly distributed Pareto front and better trade-offs in the structure-control design framework. The proposed approach adopts an external population to retain the non-dominated solutions found during the evolutionary process and includes a mechanism to mutate the individuals in their corresponding external population region. As a study case, the structure-control design of a serial-parallel manipulator with its control system is stated as a dynamic optimization problem and is solved by using the proposed approach. A comparative analysis shows that the multi-objective exhaustive exploitation differential evolution obtained a superior performance in the structure-control design framework than a DE algorithm which did not consider the proposal. Hence, the resulting designs provide better trade-offs between the structure-control performance functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Youcef-Toumi, K.: Modeling, design, and control integration: a necessary step in mechatronics. IEEE/ASME Trans. Mecatronics 1(1), 29–38 (1996)

    Article  Google Scholar 

  2. Isermann, R.: Modeling and design methodology for mechatronic systems. IEEE/ASME Trans. Mechatron. 1(1), 16–28 (1996)

    Article  Google Scholar 

  3. Bodden, D.S., Junkins, J.L.: Eigenvalue optimization algorithms for structure/controller design iterations. J. Guidance Control Dyn. 8(6), 697–706 (1985)

    Article  MATH  Google Scholar 

  4. Ling, J., Kabamba, P., Taylor, J.: Multicriterion structure/control design for optimal maneuverability and fault tolerance of flexible spacecraft. J. Optim. Theory Appl. 82(2), 219–251 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Reyer, J.A., Papalambros, P.Y.: Combined optimal design and control with application to an electric DC motor. J. Mech. Des. 124(2), 183–191 (2002)

    Article  Google Scholar 

  6. Pil, A., Asada, H.: Integrated structure/control design of mechatronics systems using a recursive experimental optimization method. IEEE/ASME Trans. Mechatron. 1(1), 191–203 (1996)

    Article  Google Scholar 

  7. Zhang, W.J., Li, Q., Guo, L.S.: Integrated design of mechanical structure and control algorithm for a programmable four-bar linkage. IEEE/ASME Trans. Mechatron. 4(4), 354–362 (1999)

    Article  Google Scholar 

  8. Li, Q., Zhang, W.J., Chen, L.: Design for control—a concurrent engineering approach for mechatronics systems design. IEEE/ASME Trans. Mechatron. 6(2), 161–169 (2001)

    Article  Google Scholar 

  9. Fathy, H.K., Reyer, J.A., Papalambros, P.Y., Ulsov, A.G.: On the coupling between the plant and controller optimization problems. In: American Control Conference, 2001. Proceedings of the 2001, vol. 3, pp. 1864–1869 (2001)

  10. Yan, H.S., Yan, G.J.: Integrated control and mechanism design for the variable input-speed servo four-bar linkages. Mechatronics 19(2), 274–285 (2009)

    Article  Google Scholar 

  11. Villarreal-Cervantes, M., Cruz-Villar, C., Alvarez-Gallegos, J.: Synergetic structure-control design via a hybrid gradient-evolutionary algorithm. Optim. Eng. 16(3), 511–539 (2015)

    Article  MathSciNet  Google Scholar 

  12. Yang, Y.P., Chen, Y.A.: Multiobjective optimization of hard disk suspension assemblies: part ii—integrated structure and control design. Comput. Struct. 59(4), 771–782 (1996)

    Article  MATH  Google Scholar 

  13. Li, Q., Wu, F.X.: Control performance improvement of a parallel robot via the design for control approach. Mechatronics 14(8), 947–964 (2004)

    Article  Google Scholar 

  14. Ouyang, P.R., Li, Q., Zhang, W.J.: Integrated design of robotic mechanisms for force balancing and trajectory tracking. Mechatronics 13(8–9), 887–905 (2003)

    Article  Google Scholar 

  15. Fu, K., Mills, J.K.: A convex approach solving simultaneous mechanical structure and control system design problems with multiple closed-loop performance specifications. J Dyn. Syst. Meas. Control 127(1), 57–68 (2005)

    Article  Google Scholar 

  16. Portilla-Flores, E.A., Mezura, E., Alvarez-Gallegos, J., Coello-Coello, C.A., Cruz-Villar, C.A.: Integration of structure and control using an evolutionary approach: an application to the optimal concurrent design of a CVT. Int. J. Numer. Methods Eng. 71(8), 883–890 (2007)

    Article  MATH  Google Scholar 

  17. Cruz-Villar, C.A., Alvarez-Gallegos, J., Villarreal-Cervantes, M.G.: Concurrent redesign of an underactuated robot manipulator. Mechatronics 19, 178–183 (2009)

    Article  Google Scholar 

  18. Alyaqout, S., Papalambros, P., Ulsoy, A.: Combined robust design and robust control of an electric DC motor. IEEE/ASME Trans. Mechatron. 16(3), 574–582 (2011)

    Article  Google Scholar 

  19. Osyczka, A.: Multicriterion Optimization in Engineering with Fortran Programmes. Halsted Press, Ultimo (1984)

    Google Scholar 

  20. Coello, C.A.C., Lamont, G.B.: Applications of Multi-Objective Evolutionary Algorithms. World Scientific Publishing Co, Singapore (2004)

    Book  MATH  Google Scholar 

  21. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (2006)

    Book  MATH  Google Scholar 

  22. Conway, B.: A survey of methods available for the numerical optimization of continuous dynamic systems. J. Optim. Theory Appl. 152(2), 271–306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Portilla-Flores, E.A., Mezura-Montes, E., Alvarez-Gallegos, J., Coello-Coello, C.A., Cruz-Villar, C.A., Villarreal-Cervantes, M.G.: Parametric reconfiguration improvement in non-iterative concurrent mechatronic design using an evolutionary-based approach. Eng. Appl. Artif. Intell. 24(5), 757–771 (2011)

    Article  Google Scholar 

  24. Villarreal-Cervantes, M.G., Cruz-Villar, C.A., Alvarez-Gallegos, J., Portilla-Flores, E.A.: Robust structure-control design approach for mechatronic systems. IEEE/ASME Trans. Mechatron. 18(5), 1592–1601 (2013)

    Article  Google Scholar 

  25. Affi, Z., EL-Kribi, B., Romdhane, L.: Advanced mechatronic design using a multi-objective genetic algorithm optimization of a motor-driven four-bar system. Mechatronics 17(9), 489–500 (2007)

    Article  Google Scholar 

  26. EL-Kribi, B., Houidi, A., Affi, Z., Romdhane, L.: Application of multi-objective genetic algorithms to the mechatronic design of a four bar system with continuous and discrete variables. Mech. Mach. Theory 61(1), 68–83 (2013)

    Article  Google Scholar 

  27. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  28. Mezura-Montes, E., Reyes-Sierra, M., Coello, C.: Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In: Chakraborty, U. (ed.) Advances in Differential Evolution, Studies in Computational Intelligence, vol. 143, pp. 173–196. Springer, Berlin (2008)

    Google Scholar 

  29. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)

    Article  Google Scholar 

  30. Weber, M., Neri, F., Tirronen, V.: Distributed differential evolution with explorative-exploitative population families. Genet. Program. Evolvable Mach. 10(4), 343–371 (2009)

    Article  Google Scholar 

  31. Epitropakis, M., Tasoulis, D., Pavlidis, N., Plagianakos, V., Vrahatis, M.: Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Trans. Evol. Comput. 15(1), 99–119 (2011)

    Article  Google Scholar 

  32. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  33. Schwefel, H.P.: Evolution and Optimization Seeking. Wiley, New York (1995)

    Google Scholar 

  34. Deb, K., Kain, S.: Multi-speed gearbox design using multi-objective evolutionary algorithms. J. Mech. Des. 125(3), 609–619 (2003)

    Article  Google Scholar 

  35. Shiakolas, P., Koladiya, D., Kebrle, J.: On the optimum synthesis of six bar linkages using differential evolution and the geometric centroid of precision positions technique. Mech. Mach. Theory 40(3), 319–335 (2005)

    Article  MATH  Google Scholar 

  36. Knowles, J.D., Corne, D.W.: The pareto archived evolution strategy: a new baseline algorithmfor pareto multiobjective optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 1, pp. 98–105 (1999)

  37. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  38. Lung-Wen, T.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

  39. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (2004)

    Google Scholar 

  40. Villarreal-Cervantes, M.G., Cruz-Villar, C.A., Alvarez-Gallegos, J., Portilla-Flores, E.A.: Differential evolution techniques for the structure-control design of a five-bar parallel robot. Eng. Optim. 42(6), 535–565 (2010)

    Article  MathSciNet  Google Scholar 

  41. Villarreal-Cervantes, M.G., Alvarez-Gallegos, J.: Off-line PID control tuning for a planar parallel robot using de variants. Expert Syst. Appl. 64, 444–454 (2016)

    Article  Google Scholar 

  42. Van Veldhuizen, D., Lamont, G.: On measuring multiobjective evolutionary algorithm performance. Congr. Evolut. Comput. 1, 204–211 (2000)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges support from the COFAA of the Instituto Politécnico Nacional and from SEP-CONACyT, via the project numbers 20160826 and 182298, respectively. Furthermore, I would like to express my appreciation for the help provided in the grammatical expressions by English professor Lawrence Whitehill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel G. Villarreal-Cervantes.

Additional information

Communicated by Mauro Pontani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villarreal-Cervantes, M.G. Approximate and Widespread Pareto Solutions in the Structure-Control Design of Mechatronic Systems. J Optim Theory Appl 173, 628–657 (2017). https://doi.org/10.1007/s10957-016-1053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-1053-4

Keywords

Mathematics Subject Classification

Navigation