[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Solving the Maximum Clique Problem with Symmetric Rank-One Non-negative Matrix Approximation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Finding complete subgraphs in a graph, that is, cliques, is a key problem and has many real-world applications, e.g., finding communities in social networks, clustering gene expression data, modeling ecological niches in food webs, and describing chemicals in a substance. The problem of finding the largest clique in a graph is a well-known difficult combinatorial optimization problem and is called the maximum clique problem. In this paper, we formulate a very convenient continuous characterization of the maximum clique problem based on the symmetric rank-one non-negative approximation of a given matrix and build a one-to-one correspondence between stationary points of our formulation and cliques of a given graph. In particular, we show that the local (resp. global) minima of the continuous problem corresponds to the maximal (resp. maximum) cliques of the given graph. We also propose a new and efficient clique finding algorithm based on our continuous formulation and test it on the DIMACS data sets to show that the new algorithm outperforms other existing algorithms based on the Motzkin–Straus formulation and can compete with a sophisticated combinatorial heuristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  2. Luce, R.D., Perry, A.D.: A method for matrix analysis of group structure. Psychometrika 14, 94–114 (1949)

    Article  MathSciNet  Google Scholar 

  3. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6, 281–297 (1999)

    Article  Google Scholar 

  4. Sugihara, G.: Graph theory, homology and food webs. Proc. Symp. Appl. Math. 30, 83–101 (1984)

    Article  MathSciNet  Google Scholar 

  5. Prihar, Z.: Topological properties of telecommunication networks. Proc. IRE 44, 927–933 (1956)

  6. Rhodes, N., Willett, P., Calvet, A., Dunbar, J.B., Humblet, C.: CLIP: similarity searching of 3D databases using clique detection. J. Chem. Inf. Comput. Sci. 43(2), 443–448 (2003)

    Article  Google Scholar 

  7. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.-Z., Pardalos P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1–74. Springer, New York (1999). doi:10.1007/978-1-4757-3023-4

  8. Wu, Q., Hao, J.-K.: A review on algorithms for maximum clique problems. Eur. J. Oper. Res. 242(3), 693–709 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics for the maximum clique problem. J. Heuristics 14, 587–612 (2008)

    Article  MATH  Google Scholar 

  10. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turan. Can. J. Math. 17, 533–540 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bomze, I.M.: Evolution towards the maximum clique. J. Glob. Optim. 10, 143–164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, C., Li, T., Jordan, M.I.: Non-negative matrix factorization for combinatorial optimization: spectral clustering, graph matching and clique finding. IEEE Int. Conf. Data Mining 44, 183–192 (2008)

    Google Scholar 

  13. Gibbons, L.E., Hearn, D.W., Pardalos, P.M., Ramana, M.V.: Continuous characterization of the maximum clique problem. Math. Oper. Res. 22(3), 754–768 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pardalos, P.M., Phillips, A.T.: A global optimization approach for solving the maximum clique problem. Int. J. Comput. Math. 17, 533–540 (1990)

    MATH  Google Scholar 

  15. Pelillo, M.: Relaxation labeling networks for the maximum clique problem. J. Artif. Neural Netw. 2(4), 313–328 (1995)

    Google Scholar 

  16. Du, G., Gu, J., Pardalos, P.M.: Satisfiability Problem: Theory and Applications, DIMACS Series, vol. 35. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  17. Horst, R., Pardalos, P.M., Van Thoai, N.: Introduction to Global Optimization. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  18. Pardalos, P.M., Xue, J.: The maximum clique problem. J. Glob. Optim. 4, 301–328 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gillis, N., Glineur, F.: Continuous characterization of the maximum-edge biclique problem. J. Glob. Optim. 58, 439–464 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Belachew, M.T., Gillis N.: Solving the Maximum Clique Problem with Symmetric Rank-One Non-negative Matrix Approximation. arXiv:1505.07077 (2015)

  21. Ho, N.D.: Non-negative Matrix Factorization Algorithms and Applications. Doctoral dissertation, Université catholique de Louvain (2008)

  22. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  23. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Prog. 39, 93–116 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, C.-J., Moré, J.J.: Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9(4), 1100–1127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  26. Vandaele, A., Gillis, N., Glineur, F., Tuyttens, D.: Heuristics for exact non-negative matrix factorization. J. Glob. Optim. 65(2), 369–400 (2016)

    Article  MATH  Google Scholar 

  27. Berman, A., Plemmons, R.J.: Non-negative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was conducted when the first author was visiting the Department of Mathematics and Operational Research at the University of Mons. We would like to thank the reviewers and Prof. Kunal Narayan Chaudhury for their insightful feedback that helped us improve the paper significantly. NG acknowledges the support of the F.R.S–FNRS (incentive Grant for Scientific Research No. F.4501.16) and of the ERC (Starting Grant No. 679515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Gillis.

Additional information

Communicated by Jim Luedtke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belachew, M.T., Gillis, N. Solving the Maximum Clique Problem with Symmetric Rank-One Non-negative Matrix Approximation. J Optim Theory Appl 173, 279–296 (2017). https://doi.org/10.1007/s10957-016-1043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-1043-6

Keywords

Mathematics Subject Classification

Navigation