[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Error Bounds Via Exact Penalization with Applications to Concave and Quadratic Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we deal with the error bounds for inequality systems and the exact penalization for constrained optimization problems. We firstly investigate the relationships between the error bound and the exact penalization. Then we establish the new error bounds for inequality systems of concave functions and of nonconvex quadratic functions over polyhedral convex sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand. 49, 263–265 (1952)

    Article  MathSciNet  Google Scholar 

  2. Azé, D., Corvellec, J.-N.: Characterization of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10, 409–425 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fabian, M., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-Valued Var. Anal. 18, 121–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Optim. 4, 383–392 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Luo, Z.Q., Pang, J.S.: Error bounds for the analytic systems and their applications. Math. Program. 67, 1–28 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ngai, H., Théra, M.: Errors bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization. Set-Valued Anal. 12, 195–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ngai, H., Théra, M.: Error bounds for convex differentiable inequality systems in Banach spaces. Math. Program. 104(2), 465–482 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, Z., Ye, J.: On errors bounds for lower semicontinuous functions. Math. Program. 92, 301–314 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wu, Z., Ye, J.: First-order and second-order conditions for error bounds. SIAM J. Optim. 14(3), 621–645 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Azé, D.: A survey on error bounds for lower semicontinuous functions. In: ESAIM: Proceding 13, pp. 1–17 (2003)

  11. Lewis, A.S., Pang, J.S.: Error bound for convex inequality systems. In: Crouzeix, J.P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 75–110. Kluwer Academic Publisher, Dordrecht (1997)

    Google Scholar 

  12. Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Auslender, A., Crouzeix, J.P.: Global regularily theorems. Math. Oper. Res. 13, 243–253 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, W.: Abadie’s constraint qualification, metric regularity, and error bound for differentiable convex inequalities. SIAM J. Optim. 7(4), 966–978 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  16. Wang, T., Pang, J.S.: Global error bound for convex quadratic inequality systems. Optimization 31, 1–12 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jourani, A.: Hoffman’s error bound, local controlability and sensivity analysis. SIAM J. Control Optim. 38, 947–970 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ng, K.F., Zheng, X.Y.: Error bound for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12, 1–17 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ngai, H.V., Théra, M.: Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math. Program. 116, 397–427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo, Z.Q., Pang, J.S., Ralph, D., Wu, S.-Q.: Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints. Math. Program. 75, 19–76 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, Z.Q., Sturm, J.F.: Error bounds for quadratic systems. In: Frenk, H., et al. (eds.) High Performance Optimization, pp. 383–404. Kluwer Academic Publisher, Dordrecht (2000)

    Chapter  Google Scholar 

  22. Huang, L.R., Ng, K.F.: On first and second-order conditions for error bounds. SIAM J. Optim. 14, 1057–1073 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bonnans, J.F., Ioffe, A.: Second-order sufficiency and quadratic growth for non isolated minima. Math. Oper. Res. 20, 801–817 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  25. Ioffe, A.: Calculus of Dini subdifferentials of functions and contingent coderitaves of set-valued maps. Nonlinear Anal. 8, 517–539 (1984)

    Article  MathSciNet  Google Scholar 

  26. Rockafellar, R.T., Wets, J.-B.: Variational Analysis. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  27. Le Thi, H.A., Pham Dinh, T., Ngai, H.V.: Exact penalty techniques in DC programming. J. Glob. Optim. 52(3), 509–535 (2012)

    Article  MATH  Google Scholar 

  28. Pang, J.S., Cottle, R.W., Stone, R.E.: The Linear Complementary Problem. Kluwer Academic, Boston (1992)

    MATH  Google Scholar 

  29. Moré, J.J.: Generalizations of the trust region problem. Optim. Methods Softw. 2, 189–209 (1993)

    Article  Google Scholar 

  30. Ioffe, A.: Regular points of Lipschitz functions. Trans. Am. Soc. 251, 61–69 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai An Le Thi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Thi, H.A., Van Ngai, H. & Pham Dinh, T. Error Bounds Via Exact Penalization with Applications to Concave and Quadratic Systems. J Optim Theory Appl 171, 228–250 (2016). https://doi.org/10.1007/s10957-016-0967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0967-1

Keywords

Mathematics Subject Classification

Navigation