Abstract
In this paper, we deal with the error bounds for inequality systems and the exact penalization for constrained optimization problems. We firstly investigate the relationships between the error bound and the exact penalization. Then we establish the new error bounds for inequality systems of concave functions and of nonconvex quadratic functions over polyhedral convex sets.
Similar content being viewed by others
References
Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand. 49, 263–265 (1952)
Azé, D., Corvellec, J.-N.: Characterization of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10, 409–425 (2004)
Fabian, M., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-Valued Var. Anal. 18, 121–149 (2010)
Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Optim. 4, 383–392 (1994)
Luo, Z.Q., Pang, J.S.: Error bounds for the analytic systems and their applications. Math. Program. 67, 1–28 (1994)
Ngai, H., Théra, M.: Errors bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization. Set-Valued Anal. 12, 195–223 (2004)
Ngai, H., Théra, M.: Error bounds for convex differentiable inequality systems in Banach spaces. Math. Program. 104(2), 465–482 (2005)
Wu, Z., Ye, J.: On errors bounds for lower semicontinuous functions. Math. Program. 92, 301–314 (2002)
Wu, Z., Ye, J.: First-order and second-order conditions for error bounds. SIAM J. Optim. 14(3), 621–645 (2003)
Azé, D.: A survey on error bounds for lower semicontinuous functions. In: ESAIM: Proceding 13, pp. 1–17 (2003)
Lewis, A.S., Pang, J.S.: Error bound for convex inequality systems. In: Crouzeix, J.P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 75–110. Kluwer Academic Publisher, Dordrecht (1997)
Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)
Auslender, A., Crouzeix, J.P.: Global regularily theorems. Math. Oper. Res. 13, 243–253 (1998)
Li, W.: Abadie’s constraint qualification, metric regularity, and error bound for differentiable convex inequalities. SIAM J. Optim. 7(4), 966–978 (1997)
Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)
Wang, T., Pang, J.S.: Global error bound for convex quadratic inequality systems. Optimization 31, 1–12 (1994)
Jourani, A.: Hoffman’s error bound, local controlability and sensivity analysis. SIAM J. Control Optim. 38, 947–970 (2000)
Ng, K.F., Zheng, X.Y.: Error bound for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12, 1–17 (2001)
Ngai, H.V., Théra, M.: Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math. Program. 116, 397–427 (2009)
Luo, Z.Q., Pang, J.S., Ralph, D., Wu, S.-Q.: Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints. Math. Program. 75, 19–76 (1996)
Luo, Z.Q., Sturm, J.F.: Error bounds for quadratic systems. In: Frenk, H., et al. (eds.) High Performance Optimization, pp. 383–404. Kluwer Academic Publisher, Dordrecht (2000)
Huang, L.R., Ng, K.F.: On first and second-order conditions for error bounds. SIAM J. Optim. 14, 1057–1073 (2004)
Bonnans, J.F., Ioffe, A.: Second-order sufficiency and quadratic growth for non isolated minima. Math. Oper. Res. 20, 801–817 (1995)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Ioffe, A.: Calculus of Dini subdifferentials of functions and contingent coderitaves of set-valued maps. Nonlinear Anal. 8, 517–539 (1984)
Rockafellar, R.T., Wets, J.-B.: Variational Analysis. Springer, Heidelberg (1998)
Le Thi, H.A., Pham Dinh, T., Ngai, H.V.: Exact penalty techniques in DC programming. J. Glob. Optim. 52(3), 509–535 (2012)
Pang, J.S., Cottle, R.W., Stone, R.E.: The Linear Complementary Problem. Kluwer Academic, Boston (1992)
Moré, J.J.: Generalizations of the trust region problem. Optim. Methods Softw. 2, 189–209 (1993)
Ioffe, A.: Regular points of Lipschitz functions. Trans. Am. Soc. 251, 61–69 (1979)
Acknowledgments
We would like to thank the referees for their helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Le Thi, H.A., Van Ngai, H. & Pham Dinh, T. Error Bounds Via Exact Penalization with Applications to Concave and Quadratic Systems. J Optim Theory Appl 171, 228–250 (2016). https://doi.org/10.1007/s10957-016-0967-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-016-0967-1