[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Locally Densely Defined Equilibrium Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, by an approach, which is based on a notion of sequentially sign property for bifunctions, we establish existence results for equilibrium problems in the setting of Hausdorff locally convex topological vector spaces. The main advantages of this approach are that our conditions are imposed just on a locally segment-dense set, instead of the whole domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III, pp. 103–113. Academic Press, New York (1972)

    Google Scholar 

  2. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18, 1159–1166 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Existence and solution methods for equilibria. Eur. J. Oper. Res. 227, 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bianchi, M., Pini, R.: Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124, 79–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bianchi, M., Pini, R.: A note on equilibrium problems with properly quasimonotone bifunctions. J. Glob. Optim. 20, 67–76 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31–43 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bigi, G., Castellani, M., Kassay, G.: A dual view of equilibrium problems. J. Math. Anal. Appl. 342, 17–26 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burachik, R., Kassay, G.: On a generalized proximal point method for solving equilibrium problems in Banach spaces. Nonlinear Anal. 75, 6456–6464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giannessi, F.: Vector Variational Inequalities and Vector Equilibria. Mathematical Theories. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  11. Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Prog. 116, 259–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iusem, A.N., Sosa, W.: New existence results for equilibrium problems. Nonlinear Anal. 52, 621–635 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. László, S., Viorel, A.: Densely defined equilibrium problems. J. Optim. Theory Appl. 166, 52–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Alleche, B., Rǎdulescu, V.D.: Set-valued equilibrium problems with applications to Browder variational inclusions and to fixed point theory. Nonlinear Anal. Real World Appl. 28, 251-68 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aussel, D., Hadjisavvas, N.: On quasimonotone variational inequalities. J. Optim. Theory Appl. 121, 445–450 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Castellani, M., Giuli, M.: Refinements of existence results for relaxed quasimonotone equilibrium problem. J. Glob. Optim. 57, 1213–1227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Farajzadeh, A.P., Zafarani, J.: Equilibrium problems and variational inequalities in topological vector spaces. Optimization 59, 485–499 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jafari, S., Farajzadeh, A.P.: Existence results for equilibrium problems under strong sign property. Int. J. Nonlinear Anal. Appl. (2016) (accepted manuscript)

  19. Luc, D.T.: Existence results for densely pseudomonotone variational inequalities. J. Math. Anal. Appl. 254, 291–308 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Alleche, B., Rǎdulescu, V.D., Sebaoui, M.: The Tikhonov regularization for equilibrium problems and applications to quasihemivariational inequalities. Optim. Lett. 9, 483–503 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jahn, J.: Vector Optimization. Springer, New York (2004)

    Book  MATH  Google Scholar 

  22. Karamardian, S.: Strictly quasi-convex (concave) functions and duality in mathematical programming. J. Math. Anal. Appl. 20, 344–358 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fan, K.: Some properties of convex sets related to fixed point theorems. Math. Ann. 266, 519–537 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luc, D.T., Sarabi, E., Soubeyran, A.: Existence of solutions in variational relation problems without convexity. J. Math. Anal. Appl. 364, 544–555 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tian, G.Q.: Generalizations of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium, and complementarity. J. Math. Anal. Appl. 170, 457–471 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dinh The Luc for taking time to read the paper and his valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Somaye Jafari or Ali Farajzadeh.

Additional information

Communicated by Byung-Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, S., Farajzadeh, A. & Moradi, S. Locally Densely Defined Equilibrium Problems. J Optim Theory Appl 170, 804–817 (2016). https://doi.org/10.1007/s10957-016-0950-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0950-x

Keywords

Mathematics Subject Classification

Navigation