[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Reachable Set Analysis Method for Generating Near-Optimal Trajectories of Constrained Multiphase Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Few sophisticated problems in the optimal control of a dynamical system can be solved analytically. There are many numerical solution methods, but most, especially those with the most potential accuracy, work iteratively and must be initialized with a guess of the solution. Satisfactory guesses may be very difficult to generate. In this work, a “Reachable Set Analysis” (RSA) method is developed to find near-optimal trajectories for multiphase systems with no a priori knowledge. A multiphase system is a generalization of a dynamical system that includes possible changes on the governing equations throughout the trajectory; the traditional dynamical system where the governing equations do not change is included in the formulation as a special case. The RSA method is based on a combination of metaheuristic algorithms and nonlinear programming. A particularly beneficial aspect of the solution found using RSA is that it satisfies the system governing equations and comes arbitrarily close (to a degree chosen by the planner) to satisfying given terminal conditions. Three qualitatively different multiphase problems, such as a low-thrust transfer from Earth to Mars, a system with chattering arcs in the optimal control, and a motion planning problem with obstacles, are solved using the near-optimal trajectories found by RSA as initial guesses to show the effectiveness of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Bryson, A.E., Ho, Y.C.: Applied Optimal Control, pp. 47–89. Hemisphere, New York (1975)

  2. Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control Dyn. 10, 338–342 (1987)

    Article  MATH  Google Scholar 

  3. Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules. J. Guid. Control Dyn. 19, 592–599 (1996)

    Article  MATH  Google Scholar 

  4. Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dyn. 25, 160–166 (2002)

    Article  Google Scholar 

  5. Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–1002 (1992)

    Article  MATH  Google Scholar 

  6. Gill, P.E., Murray, W., Saunders, M.A.: User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming. Stanford Business Software, Inc. (2007).

  7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, pp. 6–14. Addison-Wesley, Reading, MA (1989).

  8. Chilan, C.M., Conway, B.A.: Automated design of multiphase space missions using hybrid optimal control. J. Guid. Control Dyn. 36, 1410–1424 (2013)

    Article  Google Scholar 

  9. Horie, K., Conway, B.A.: Genetic algorithm pre-processing for numerical solution of differential games problems. J. Guid. Control Dyn. 27, 1075–1078 (2004)

    Article  Google Scholar 

  10. Clerc, M., Kennedy, J.: The particle swarm -explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  11. Ghosh, P., Conway, B.A.: Numerical trajectory optimization with swarm intelligence and dynamic assignment of solution structure. J. Guid. Control Dyn. 35, 1178–1191 (2012)

    Article  Google Scholar 

  12. Englander, J., Conway, B.A., Williams, T.: Automated mission planning via evolutionary algorithms. J. Guid. Control Dyn. 35, 1878–1887 (2012)

    Article  Google Scholar 

  13. Ross, I.M., D’Souza, C.N.: Hybrid optimal control framework for mission planning. J. Guid. Control Dyn. 28, 686–697 (2005)

    Article  Google Scholar 

  14. Chilan, C.M., Conway, B.A.: Using genetic algorithms for the construction of a space mission automaton. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2316–2323. Trondheim, Norway (2009).

  15. Scheel, W.A., Conway, B.A.: Optimization of very-low-thrust, many-revolution spacecraft trajectories. J. Guid. Control Dyn. 17, 1185–1192 (1994)

    Article  Google Scholar 

  16. Cantu-Paz, E., Goldberg, D.E.: On the scalability of parallel genetic algorithms. Evol. Comput. 7, 429–449 (1999)

    Article  Google Scholar 

  17. Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D.: Parallel global optimization with the particle swarm algorithm. Int. J. Numer. Meth. Eng. 61, 2296–2315 (2004)

    Article  MATH  Google Scholar 

  18. Koh, B.-I., George, A.D., Haftka, R.T., Fregly, B.J.: Parallel asynchronous particle swarm optimization. Int. J. Numer. Meth. Eng. 67, 578–595 (2006)

    Article  MATH  Google Scholar 

  19. Prussing, J.E.: Primer vector theory and applications. In: Conway, B.A. (ed.): Spacecraft Trajectory Optimization, pp. 16–36. Cambridge University Press, New York (2010).

  20. Schoenauer, M., Michalewics, Z.: Evolutionary computation at the edge of feasibility. Lecture Notes in Computer Science vol. 1141, pp. 245–254 (1996)

  21. Chilan, C.M.: Automated Design of Multiphase Space Missions Using Hybrid Optimal Control. Ph.D. Dissertation, University of Illinois at Urbana-Champaign (2009).

  22. Danby, J.M.A: Fundamentals of Celestial Mechanics, pp. 427–429. Willmann-Bell, Richmond, Virginia (1988).

  23. Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52, 397–407 (2004)

    Article  MathSciNet  Google Scholar 

  24. Marchal, C.: Chattering arcs and chattering controls. J. Optim. Theory Appl. 11, 441–468 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  25. Fuller, A.T.: Study of an optimum non-linear control system. J. Electron. Control 15, 63–71 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Conway.

Additional information

Communicated by Kenneth D. Mease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chilan, C.M., Conway, B.A. A Reachable Set Analysis Method for Generating Near-Optimal Trajectories of Constrained Multiphase Systems. J Optim Theory Appl 167, 161–194 (2015). https://doi.org/10.1007/s10957-014-0651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0651-2

Keywords

Mathematics Subject Classification

Navigation