[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimal Asset Allocation: A Worst Scenario Expectation Approach

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Mean-variance criterion has long been the main stream approach in the optimal portfolio theory. The investors try to balance the risk and the return on their portfolio. In this paper, the deviation of the asset return from the investor’s expectation in the worst scenario is used as the measure of risk for portfolio selection. One important advantage of this approach is that the investors can base on their own knowledge, information, and preference on various risks, in addition to the asset’s volatility, to adjust their exposure to various risks. It also pinpoints one main concern of the investors when they invest, the amount they lose in the worst situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  2. Zhou, X.Y., Li, D.: Continuous-time mean variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42, 19–33 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, D., Ng, W.L.: Optimal dynamic portfolio selection: multiperiod mean-variance formation. Math. Finance 10(3), 387–406 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, P., Yang, H., Yin, G.: Markowitz’s mean-variance asset-liability management with regime switching: a continuous model. Insur. Math. Econ. 43, 456–465 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Samuelson, P.A.: Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat. 51(3), 239–246 (1969)

    Article  Google Scholar 

  6. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51(3), 247–257 (1969)

    Article  Google Scholar 

  7. Merton, R.C.: An intertemporal capital asset pricing model. Econometrica 41(5), 867–887 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gennotte, G.: Optimal portfolio choice under incomplete information. J. Finance 41(3), 733–746 (1986)

    Google Scholar 

  9. Bawa, V.S.: Safety-first, stochastic dominance, and optimal portfolio choice. J. Financ. Quant. Anal. 13(2), 255–271 (1978)

    Article  MathSciNet  Google Scholar 

  10. Harlow, W.V.: Asset allocation in a downside-risk framework. Financ. Anal. J. 47(5), 28–40 (1991)

    Article  Google Scholar 

  11. Sing, T.F., Ong, S.E.: Asset allocation in a downside risk framework. J. Real Estate Portf. Manag. 6(3), 213–223 (2000)

    Google Scholar 

  12. Li, D., Chan, T.F., Wan, W.L.: Safety-first dynamic portfolio selection. Dyn. Contin. Discrete Impuls. Syst. 4, 585–600 (1998)

    MATH  Google Scholar 

  13. Longstaff, F.A.: Optimal portfolio choice and the valuation of illiquid securities. Rev. Financ. Stud. 14(2), 407–431 (2001)

    Article  MathSciNet  Google Scholar 

  14. Bertsimas, D., Lauprete, G.J., Samarov, A.: Shortfall as a risk measure: properties, optimization and applications. J. Econ. Dyn. Control 28, 1353–1381 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Artzner, P., Delbaen, F., Eber, J., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, H., Siu, T.K.: Coherent risk measures for derivatives under Black-Scholes economy. Int. J. Theor. Appl. Finance 4(5), 819–835 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elliott, R.J., Siu, T.K., Chan, L.: A PDE approach for risk measures for derivatives with regime switching. Ann. Finance 4, 55–74 (2008)

    Article  MATH  Google Scholar 

  18. Siu, T.K., Yang, H.: A PDE approach to risk measures of derivatives. Appl. Math. Finance 7, 211–228 (2000)

    Article  MATH  Google Scholar 

  19. Gianin, E.R.: Risk measures via g-expectations. Insur. Math. Econ. 39, 19–34 (2006)

    Article  MATH  Google Scholar 

  20. Duffie, D.: Dynamic Asset Pricing Theory. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Lung Yuen.

Additional information

Communicated by Kok Lay Teo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuen, F.L., Yang, H. Optimal Asset Allocation: A Worst Scenario Expectation Approach. J Optim Theory Appl 153, 794–811 (2012). https://doi.org/10.1007/s10957-011-9972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9972-6

Keywords

Navigation